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Abstract  For actual operating conditions, wheel/rail contact forces of high-speed train are very difficult to 
directly measure. Minimizing the role of driving force between wheel and rail is a key point to ensure 
railway wheel-rail transport systems in good condition and efficient operation in the long-term. A 
time-domain inversion method for dynamic loads was proposed. Based on the state space equation, dynamic 
programming methods and the Bellman principle of optimality, the main theoretical derivation of the 
inversion mathematical model was given. With a high-speed vehicle system as the research object, 
accelerations of axle box as input conditions, the vertical and horizontal wheel/rail forces were identified. 
Inverse results were compared with SIMPACK simulation results which had the same kinetic parameters. 
The results indicate that the vertical and horizontal wheel/rail forces had the same trend with SIMPACK 
simulation results. Results from the inverse model were also compared with experiment data. The inverse 
model has high inverse accuracy, and can be used for real-time monitoring of the running train wheel/rail 
contact forces. 
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1. Introduction 
 
The estimation of dynamic forces acting on a structure is a problem that has been treated with only 
partial success. Methods for such estimation include in two categories, direct methods and indirect 
methods. Direct methods use the placement of force transducers into the load paths at the point of 
force application. Indirect methods use other sensor types placed at locations on the structure that 
may not necessarily correspond to the force input locations. Many situations require indirect 
methods because the forces cannot be measured[1]. For example, the train is subject to a wheel/rail 
impact load when operating because of rail irregularities and crossing turnouts. 

Currently, various methods for inverse identification problem associated with indirect force 
measurements have been proposed, see for example Ref. [2-4] for an overview. Among them, are 
two main methods: the frequency domain[5,6]and the time domain method [7,8]. 

The running stability of a vehicle depends on the wheel/rail interaction. Wheel/rail contact 
forces play an important role to keep the vehicle stable on straight track and make it able to 
negotiate through curves smoothly. The possibility of gaining information about wheel–rail contact 
forces in real time and on-board normal rolling stock vehicles has significant value. But due to the 
complexity of the inverse identification problem in railway vehicle systems, not much research has 
been performed in this area. Some papers on this subject focused on impact detection at the contact 
point[9,10]. Commercially available systems for monitoring wheel-rail health are based on strain 
measurements at a chosen location on the track, and the track strain will be measured when the train 
passed [11]. A big disadvantage of the application of such a system is the necessity to locate strain 
measurement points at many locations on the track, not only time consuming but also expensive[12]. 
There is a great need to formulate a method that can be based on measurements on the vehicle but 
not on the track. 

This paper presents a new method to identify the time history of input excitation based on the 
dynamic programming equation. The forces were identified in the time domain by a recursive 
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formula; the response of the structure was reconstructed by using the identified forces for 
comparison; and the objective function between the identified and measured values were minimized. 
The dynamic programming technique possesses inherent limitations that cannot be avoided, 
however, it still effectively solves these problems during the identification process, and greatly 
reduces the influence from insufficient known qualities and improper boundary conditions, and 
obtain decent results comparable with the exact forces. The mathematical model is then applied to 
estimate the wheel-rail vertical load of a high-speed train, and the inversion results are compared 
with the rolling and vibrating test-bed and the very detailed SIMPACK model simulation results. 
 
2. Basis of load identification theory 
 

The finite element model of an n-DOFs linear elastic time-invariant structure, the dynamic 
governing equation is given by: 

                            ( ) ( ) ( ) ( ) 0MX t CX t KX t F t                             (1) 

where M ,C , and K are the system mass, damping, and stiffness matrices, respectively; ( )X t  is 
the displacement vectors of the structure; and F is the vector of the input excitation forces. 

Using the state space formulation, Eq. (1) is converted into a set of first order differential 
equations as follows: 

                                  x Ax Bf                                        (2) 

For the load identification problem, the known responses of the system M ,C , and K  are used 
to solve the unknown input vector ( )f s  which is in discrete form. In order to facilitate the 
computer solution, these differential equations are then rewritten as discrete equations using the 
standard exponential matrix representation. 

                                 1i i ix Cx Df                                       (3) 

                                   i iy Qx                                         (4) 

where, AhC e is the exponential matrix, and together with matrix 1( )D A C I  is the input 
influence matrix which represents the dynamics of the system and associates with load. Q is a 

2m n  selection matrix related the measurements to the state variables. 1ix   denotes the values at 
the ( 1)i th  time step of the computations. 

The goal is to find the unknown forcing term f that will cause the system described in Eq.(3) to 
best match the measurements ˆiy . The mathematical representation of a best match is to minimize 
the least squares error between ˆiy  and iy . This is expressed in matrix-vector notation with the 
inner product of two vectors (.,.). The least error squares are now expressed as: 

                          1 2
1

ˆ ˆ( ) ( ) ( ) ( )
N

T T
i i i i i i

i

E y y y y f f 


                        (5) 

whereT is the transpose of a matrix, iy and ˆiy are the output variables of the system for the 
identification formula and measurement, respectively. 1 and 2 are symmetric positive definite 
matrices that provide the flexibility of weighting the measurement and the forcing terms. The 
second term is known as the regularization parameter and the method is called the Tikhonov method. 
The value of 2 is very important for the result, fortunately, there exists a method that can be used 
to estimate the optimum value of 2 , see the reference [13]. 
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To minimize the least-squares error E in Eq.(6) over the sequence of the forcing vector, the 
dynamic programming method and Bellman's Principle of Optimality are applied. This leads to 
defining the minimize value of E for any initial x and the number of stages, n . Thus: 

                                  ( ) min ( , )
i

n n i
f

F x E x f                               (7) 

The recurrence formula can be derived by applying the Principle of Optimality: 

             
1

1 1 1 1 1 1 1 2 1 1 1ˆ ˆ( ) min[( ) ( ) ( ) ( ) ( )]
n

T T
n n n n n n n n n nf

F x Qx y Qx y f f F Cx Df 


                  (8) 

This equation represents the classic dynamic programming structure in that the minimizing at 
any point is determined by selecting the decision 1nf  to minimize the immediate cost (first and 
second terms) and the remaining cost resulting from the decision (the third term). The solution is 
obtained by starting at the end of the process, n N , and working backward toward 1n  . At the 
end point n N , the minimum is determined from: 

                       1 2ˆ ˆ( ) min[( ) ( ) ( ) ( )]
N

T T
N N N N N N Nf

F x Qx y Qx y f f                  (9) 

At this end point the minimum is obtained by choosing 0Nf  which gives: 

                           1ˆ ˆ( ) min[( ) ( )]
N

T
N N N N Nf

F x Qx y Qx y                         (10) 

Eq.(10) can be expanded to: 

                      1 1 1ˆ ˆ ˆ( ) ( , ) 2( , ) ( , )T T
N N N N N N NF x x Q Qx x Q y y y                     (11) 

Eq.(11) can be changed as: 

                             ( ) ( , ) ( , )N N N N N N NF x x R x x S q                        (12) 

where 1
T

NR Q Q , 1 ˆ2 T
N NS Q y  , 1ˆ ˆ( , )N N Nq y y . 

Eq.(12) shows that NF is quadratic in Nx . It can be proven inductively that all of the nF are 
quadratic in nx , thus for any n we can write: 

                        ( ) ( , ) ( , )n n n n n n nF x x R x x S q                              (13) 

Substituting Eq.(13) into Eq.(8) and minimizing the equation, the optimal forcing term *
1nf  : 

                         *
2 1 1(2 2 ) 2T T T

n n n n nD R D f D S D R Cx                      (14) 

For simplification the Eq.(14), let： 

                                  1
2(2 2 )T

n nV D R D                               (15) 

                                     2 T
n nH D R                                   (16) 

Eq.(23) can now be written as: 

                                
*

1 1
T

n n n n n nf V D S V H Cx                           (17) 

These are recurrence formulas required to determine the optimal solution of Eq. (6). 
Using Pearson product-moment correlation coefficient to measure the relationship between 

identification results and actual results, usually expressed by  . The equation can be expressed by: 
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                      (18) 

where, S iF is the SIMPACK simulation value at each time point, I iF is the identification value at 
each time point, SF is the standardization variables of the SIMPACK simulation value, IF  is the 
standardization variables of the identification value. 
 
3. Laboratory verification 
 
First, a laboratory test is performed at TPL at Southwest Jiaotong University using the rolling and 
vibrating test-bed. The car body vertical acceleration, two bogie frames accelerations and four axle 
boxes accelerations are measured. Unfortunately, because of the limitation of test conditions, we 
can not measure the vertical and lateral interface forces directly. So we use a set of measured 
vertical acceleration response as inputs into the inverse vehicle model to identify other components 
of the vehicle acceleration responses, and compare with the measured results, by this way to verify 
the inversion model. 

Test scenario is shown in Figure 1, the velocity of the rolling and vibrating test-bed is 250 km/h, 
the form of rail incentive is actual measured line spectrum of Wu-Guang line. 

 

Figure 1. Test scene of the rolling and vibrating test-bed 

Using car body, two bogie frames and the first axle box (numbered from left to right) measured 
vertical acceleration as input into the inverse vehicle model, the fourth axle box acceleration 
response and the fourth wheel-set vertical force are identified. See figures 2 and 3. 
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 Figure 2. Measured and inversed accelerations     Figure 3. The estimated vertical dynamic contact force 

    for the fourth axle box                            for the fourth wheel-set 

From figure 2, the acceleration of the fourth axle box which identified by the inverse model is 
very similar to the measured value, and its correlation coefficient is 0.9756, which can be thought as 
height correlation. Figure 3 shows the inversed vertical dynamic contact force for the fourth 
wheel-set, unfortunately, it is unable to be compared with measurement value due to the limitation 
of test-bed. It is worth noting that, due to the limitation of accelerometers in low frequencies, figure 
3 is just the vertical dynamic contact force for the fourth wheel-set, the real vertical force should 
add the weight reaction force. 
 

4. The application of the inverse model in high-speed train 
 

The commonly used simulation package, SIMPACK, was used to develop a wagon model based 
on the same parameters as the inverse model. The parameters of the SIMPACK model were the 
same as the inverse model which was used to generate wheel-rail forces and accelerations at the 
axle box. These accelerations will be as the input conditions for the inverse mathematical model. In 
order to make the SIMPACK model replace a practical field test, the vehicle model developed with 
SIMPACK needs to be a very refined model which includes the nonlinearity of the wheel-rail 
contact geometry, the nonlinearity of the wheel-rail creep rate and creep forces, the nonlinearity of 
the vehicle suspension components, and so on.  

Taking into account the complexity of the car body systems, as well as many non-linear factors, 
we need to simplify the body. In this paper, for the vertical and lateral stochastic vibration inverse 
modeling of the car body, about twenty-seven degrees of freedom are considered.  

The measured track irregularity from Beijing to Tianjin was used as the input to the SIMPACK 
with a simulated velocity of 70 m/s. The resulting axle box accelerations were then used as inputs 
for the inverse model. The wheel-rail forces were estimated using the MATLAB package. The 
outputs of the inverse model were the axle box accelerations and wheel-rail reacting forces. The 
vertical and lateral contact forces of the third wheel-set of the inverse model and the SIMPACK 
simulation were compared, see Figures 4-5. At the same times, the derailment index which is got 
from the inverse model and the SIMPACK simulation are also compared. See figure 6. 
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   Figure 4. Wheel-rail vertical forces comparison       Figure 5. Wheel-rail lateral forces comparison 
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Figure 6. Index coefficient comparison 

To compare the results of the SIMPACK simulation and those obtained from the inverse 
identification method, as shown in Figures 4-5, we can observe that the inverse forces are consistent 
with the simulation results. Their correlation coefficients are 0.6984 and 0.6235, respectively. By 
comparing the derailment index, it can be found that the tendencies of the result are also quite 
accordant. 

 

5. Conclusion 
 
A non-iterative recurrence algorithm for input estimation algorithm mathematical model has 

been established. Combined with Tikhonovo regularization algorithm, anti-noise ability of the 
inversion model is enhanced. Based on the response of the accelerations, the method can be applied 
to the estimation of vertical and lateral contact forces for an operating rail vehicle.  

(1)The inversion model is verified by the experiment data of the laboratory test. Using some 
parts of accelerations which are measured from the rolling and vibrating test-bed to identify the 
other component of accelerations, and compare with laboratory tests. The results show that the 
inversion model can be used to identify the unknown output responses for interesting places. 

(2) From the time domain, the comparison of the vertical and lateral contact forces results 
between inverse and SIMPACK models are given. The results show that, the inverse mathematical 
model has high relatively precision for inversing the wheel/rail contact forces of operation 
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high-speed vehicle. And their correlation coefficients are greater than 0.5, can be thought as 
significant correlation. 

Since there exist many non-linear factors, such as wheel-rail contact geometry and creep effects, 
which not only must be taken into account in high-speed train modeling but also make the 
estimation process of the wheel-rail lateral contact forces are more complex than the vertical contact 
forces. More research is needed to expand the inverse model which considers the non-linear factors 
between the wheel and rail. Furthermore, the next step will involve field trial tests to verify the 
effectiveness of the inverse model. 
 

Acknowledgements 
This work was supported in part by the National Natural Science Foundation of China (51275432); 
National Key Technology R&D Program in the 11th Five year Plan of china
（2009BAG12A04-A11）; University Doctor Academics Particularly Science Research Fund 
(SWJTU09ZT23). 
 

References 
[1] T. Zhu, S. N. Xiao, and G. W. Yang, State-of-the-art development of load identification and its 

application in study on wheel-rail forces. Journal of the China Railway Society, 33 (2011) 
29-36. (Chinese). 

[2] K. K. Stevens, Force identification problems-an overview. In: Proceedings of SEM Spring 
Meeting, Houston, (1987) 838–844. 

[3] B. J. Dobson, E. Rider, A review of the indirect calculations of excitation forces from measured 
structural response data. Proc. Inst. Mech. Engrs.: J. Mech. Engrg. Sci., 204 (1990) 69-75. 

[4] L. J. L. Nordstrom, T. P. Nordberg, A critical comparison of time domain load identification 
methods. In: Proceedings of the Sixth International Conference on Motion and Vibration 
Control, 2 (2002) 1151-1156. 

[5] J. Giergiel, T. Uhl, Identification of impact forces in mechanical systems. Arch. Mach. Des., 36 
(1989) 321-336. 

[6] J. Giergiel, and T. Uhl, Identification of the input excitation forces in mechanical structures. 
Arch. Transp., 1 (1989)8-24. 

[7] B. J. Dobson, E. Rider, A review of the indirect calculation of excitation forces from measured 
structural response data. J. Mech. Eng. Sci. , 204 (1990) 69-75. 

[8] T. Uhl, J. Pieczara, Identification of operational loading forces for mechanical structures. Arch. 
Transp. ,16 (2003) 109-126. 

[9] S. Lechowicz, C. Hunt, Monitoring and managing wheel condition and loading. In: Proceeding 
of International Symposium for transportation recorders, Arlington, (1999)205-239. 

[10] J. Nielsen, A. Johansson, Out of round railway wheels-literature curve. In: Proceedings Of the 
Institute of Mechanical Engineers – part F, 214 (2002) 79-91. 

[11] A. Chudzikiewicz, Selected elements of the contact problems necessary for investigating the 
rail vehicle system. In: Kisilowski, J., Knothe, K. (eds.) Advanced railway vehicle system 
dynamics, WNT, Warszawa, 1991. 

[12] A. Chudzikiewicz, Elements of vehicle diagnostics. ITE, Radom, 2002. 
[13] P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. , 

34(1992) 561-580. 
 
 


