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Abstract  

            This work paper considers the problem of a partially permeable mixed-mode crack embedded in a graded magneto 
electro elastic layer subjected to magneto electro mechanical loads. The medium is graded in the direction orthogonal to the 
crack plane and is modeled as a non homogeneous medium with anisotropic constitutive laws. Using Fourier transform, the 
resulting magneto electro elasticity equations are converted analytically into singular integral equations which are then solved 
numerically to yield the crack-tip mode I and II stress, electric displacement and magnetic induction intensity factors. The 
main objective of this work is to study the influence of material non homogeneity, crack position and magneto electric 
permeabilities on the fields’ intensity factors for the purpose of gaining better understanding on the behavior of fractured 
graded magneto electro elastic layers. Results showed that fields’ intensity factors increase with nonhomogeneity, and 
decrease with magnetic and electric permeabilities, and as the crack become closer to the layer’s center. 

Introduction 

Smart structures possessing the ability of magneto electro mechanical energy conversion have found 
increasing application in several engineering fields such as magnetic field probes, electric packaging, 
acoustic, hydrophones, medical ultrasonic imaging, microwave electronics, optoelectronics, electronic 
instrumentation, transducers, sensors and actuators. Research has focused on the use of Functionally 
Graded Magneto Electro Elastic Materials (FGMEEM) in smart structures to improve their 
performance. But, the manufacturing of FGMEEMs may lead to cracks that can eventually propagate 
and cause premature failure. Therefore, it is of a great importance to study the fracture behavior of 
magneto electro elastic composites. 

A number of authors considered FGMEEM crack problems. Ma et al (2007) studied the mode III 
crack problem in a functionally graded magneto electro elastic strip accounting for ideal crack surface 
magneto electric permeability. Ma et al (2009) considered the problem of a surface crack in a 
functionally graded magneto electro elastic coating homogeneous elastic substrate subjected to anti-
plane mechanical and in plane magneto electrical loading for the ideal crack surface magneto electric 
permeability. Zhou et al (2004) examined the problem of two parallel symmetric permeable cracks in 
functionally graded materials under anti-plane shear loading. Feng et al (2007) analyzed the dynamic 
behavior of magneto electrically impermeable cracks in functionally graded magneto electro elastic 
plates. Feng et al (2006) studied the dynamic problem of a crack embedded in a graded magneto 
electro elastic strip assuming ideal crack surface permeability. Jun (2007) examined the scattering of 
harmonic anti-plane shear stress waves by a crack in functionally graded magneto electro elastic 
materials assuming purely permeable crack surfaces. Zhou et al (2008) solved the mode I crack 
problem in a FGMEEM infinite medium assuming air permeability within the crack. Li et al (2008) 
considered the anti-plane problem of a permeable crack intersecting the interface between two 
FGMEEM layers. Li et al (2008) analyzed the anti-plane problem of a crack in the interface of tow 
symmetrically bonded FGMEEM assuming a linear variation of the magneto electromechanical 
properties. Guo et al (2009) solved the anti-plane problem of a crack in bonded FGMEEM strip 
sandwiched between two functionally graded strips assuming ideal magneto electrical permeability on 
the crack faces. Rekik et al (2012) considered the problem of magneto electrically impermeable crack 
embedded in a graded infinite medium subjected to magneto electro mechanical loading. 

The present work consists of studying the plane problem of a partially magneto electrically permeable 
crack embedded in a graded magneto electro elastic layer. The applied magneto electro mechanical 
loading will give rise to coupled fields intensity factors; namely, mode I and II stress, electric 



displacement and magnetic induction intensity factors denoted respectively 1 2, , Dk k k and Bk . To the 

best of the authors’ knowledge, this problem was not considered in the open literature to-date. 

Problem description and formulation 

As shown in Figure 1, the problem under consideration consists of a functionally graded magneto 
electro elastic layer containing an embedded crack of length 2a along the x-axis. The crack surfaces 
are assumed to be partial magneto electrically permeable using the magnetic and electric permeability 
parameters km and ke varying in between 0 and 1 representing the cases of completely impermeable 
and completely permeable crack surfaces, respectively. Consequently, crack faces are subjected to 
mechanical tangential and normal tractions 1(x) and 2(x), electric displacement (1-ke)E(x), and 
magnetic induction (1-km)B(x). The graded layer is modeled as a nonhomogeneous elastic medium 
with magneto electromechanical properties varying in the depth direction (y-coordinate) as follows: 

   11 13 33 44 110 130 330 440, , , , , , e ,yc c c c c c c c     15 31 33 150 310 330, , , , e ,ye e e e e e   ,y  (1a,b)

   15 31 33 150 310 330, , , , e ,yf f f f f f      11 33 110 330, , e ,y     ,y  (1c,d)

   11 33 110 330, , e ,yg g g g      11 33 110 330, , e ,y     .y  (1e,f)

where 0 0 0 0 0 0, , , , ,ij ij ij ij ij ijc e f g   are the value of the magneto electromechanical coefficient in the 

FGMEEM layer along the axis 0y   and   is the nonhomogeneity parameter controlling the 
variation of these coefficient in the graded layer.  

 
Figure 1. Geometry and loading of the crack problem 

 

Neglecting body forces and local electric charge, assuming small deformations and considering linear 
constitutive laws, the basic equations consisting of equilibrium equations and Gauss’s laws for 
electricity and magnetism can be combined, resulting in the following governing magneto electro 
elasticity equations: 
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where u  and v  are, respectively, the x and y components of the mechanical displacement vector,   

and   are, respectively, the electric and magnetic potentials. 

The above magneto electro elasticity equations are subjected to the following boundary conditions: 

   13 13,0 ,extx x        33 33,0 ,extx x   ,x a   (3a,b)
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,x   (4a,b)
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   ,0 ,0 ,x x        , 0 ,0 ,x x   ,x a   (5c,d)

 13 1, 0,x h     33 1, 0,x h  ,x   (6a,b)

 3 1, 0,D x h     3 1, 0,B x h  ,x   (6c,d)

 13 2, 0,x h      33 2, 0,x h   ,x   (7a,b)

 3 2, 0,D x h     3 2, 0,B x h  ,x   (7c,d)

Eqs. (3a-d) describe the applied magneto electro mechanical loadings on the crack faces. Eqs. (4a-d) 
represent the continuity of stresses, electric displacement and magnetic fields along the crack plane. 
Eqs. (5a-d) describe the continuity of the mechanical displacement and the magnetic and electric 
potentials outside the crack. Eqs. (6a-d) and (7a-d) represent the free layer’ surfaces boundary 
conditions. 

Singular integral equations and their solutions 

The magneto electro elasticity equations (2a-d) are solved using Fourier transform to yield the 
mechanical  displacement and electric and magnetic potentials in the composite medium. The 
density functions which represent the discontinuity of the mechanical displacement, electric and 
magnetic fields across the crack are now introduced 
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Applying the boundary conditions and after a lengthy analysis, we obtain four coupled singular 

integral equations in which the unknowns are the density functions 1 2 3, ,    and 4 . After extracting 

the Cauchy and logarithmic singularities from the kernels, the four equations take the following form: 
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where the functions  , ,ijk t x  where , 1...4i j  , are known continuous and bounded kernels that 

depend on the nonhomogeneity parameter  . 

The solution of (9a-d) subject to the single-valuedness conditions may be expressed as 

       , 1..4i it w t t i   . In this solution,   21 1w t t   is the weight function which is 

obtained from the nature of the singularity at the crack tips and which is associated with the 

Chebyshev polynomial of the first kind     tntTn arccoscos . The functions    , 1..4i t i   are 

continuous and bounded functions in the interval  1,1  which may be expressed as truncated series 
of Chebyshev polynomial of the first kind. Using a suitable collocation method, a linear algebraic 
system of the unknown coefficients of the density functions is obtained. As a result, the stress intensity 
factors, the electric displacement intensity factor and the magnetic induction intensity factor can be 
expressed as: 
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Results and discussion 

The formulation using singular integral equations to determine the stress intensity factors of cracked 
functionally graded magneto electro elastic materials was established. For validation, the results for 
the case of a sufficiently thick layer, were compared to those of infinite medium (Rekik et al 2012) 
and a good agreement was obtained (Fig. 2). 

Then, a number of simulations, for different magneto electro mechanical load cases, were performed 
by varying the nonhomogeneity parameter, crack position, crack length and permeability parameters. 
The considered material is a bimorph composed of the Barium Titanium Oxide, BaTiO3 and the 
Cobalt Iron Oxide, CoFe2O4.  

Fig. 3 illustrates the effect of varying the nonhomogeneity parameter a  on the fields’ intensity 
factors for normal tractions, tangential tractions, magnetic and electric loadings in case of a central 
crack as large as the layer thickness and electromagnetic permeability of 25%.  For each loading case, 
the corresponding field’’s intensity factors showss lower sensibility to material’s nonhomogeneity 
while remaining fields’ intensity factors increase monotonouslymonotonically. 

Fig. 4 illustrates the effect of varying the crack position on the fields’ intensity factors for the same 
loading cases in the case of a crack as large as the layer thickness and electromagnetic permeability of 
25%. In case of normal traction, electric or magnetic loadings, k1, kB and kD show parabolic variation 
with crack position while k2 varies oddly. Similarly, in case of tangential traction loading, k2 varies 
parbolicallyparabolically while the k1, kB and kD vary oddly. 
 
Fig. 5 illustrates the effect of varying magneto electric permeabilities parameter in case of a central 
crack as large as the layer thickness. Fields’ intensity factors vary linearly with increasing 
impermeability. 
  



   

 
 

Figure 2: Comparison of normalized fields’ intensity factors (markers) with those published 
by Rekik et al (2012) (continuous lines) for the case of a central crack, magneto electrically 

impermeable, embedded in an FGMEEM layer four times as thick as the crack length, 
subjected to uniform normal tractions (a), tangential tractions (b), electric displacement (c), 

and magnetic induction (d) 
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Figure 3: Effect of the non homogeneity parameter a on the normalized fields’ intensity 
factors under constant normal (a) and tangential (b) crack surface tractions in addition to 

constant electric displacement (c) and magnetic induction (d) in the case of central crack with 

1 2 ,h h a  and 0.25e mk k  . 
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Figure 4: Effect of the crack position on the normalized fields’ intensity factors under 

constant normal (a) and tangential (b) crack surface tractions in addition to constant electric 
displacement (c) and magnetic induction (d) in the case of  1 2h h a  , 1a   and

0.25e mk k  . 
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Figure 5: Effect of the magneto electric partial permeability parameters on the normalized 
fields’ intensity factors under constant electric displacement (a) and magnetic induction (b) 

loadings in the case of central crack,
 
h a  and 1a  . 
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