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Abstract This work investigates the effects of cooling rate on the thermal fracture behavior of a functionally 
graded plate (FGM plate) with a periodic array of parallel edge cracks of alternating lengths. The thermal 
properties of the FGM are assumed to be continuous and piecewise differentiable functions of the coordinate 
in the plate thickness direction. A linear ramp function describes the rate of boundary temperature variation 
at the surfaces of the FGM plate. The integral equation method is used to analyze the thermal stress intensity 
factors (TSIFs) at the crack tips. The asymptotic solutions of TSIF are obtained using a closed form, short 
time solution of temperature field in the FGM plate. The effects of cooling rate and crack length ratio on the 
TSIF are examined using an Al2O3/Si3N4 FGM. Numerical results show that for given material gradation 
profile and crack morphology parameters, a lower cooling rate leads to a lower peak TSIF. For a given 
cooling rate, an appropriate material gradation profile reduces peak TSIFs. Finally, the variations of the TISF 
for the long and short cracks with the cooling rate and crack length ratio exhibit a complex pattern due to the 
interactions between the long and short cracks.  
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1. Introduction 
 
Functionally graded ceramics suffer multiple surface cracking when subjected to thermal shocks [1, 
2]. These surface cracks greatly influence the thermal fracture behavior of the materials. FGMs with 
multiple surface cracks under thermal loading were considered by Rangaraj and Kokini [3], Han 
and Wang [4], and Jin and Feng [5]. Jin and Feng [6] further investigated thermal shock residual 
strength of an FGM with multiple surface cracks. The existing analytical and computational studies 
on multiple surface cracking in FGMs have assumed that the cracks have equal length. However, 
FGMs when subjected to thermal shocks may develop multiple cracks of unequal lengths as in the 
case of monolithic ceramics. An improved model is a periodic array of parallel cracks with 
alternating lengths. For monolithic ceramics, Nemat-Nasser et al. [7] considered a periodic array of 
parallel cracks with alternating lengths in a half plane and studied the stability problem of crack 
growth. Using a boundary element method and an energy release fracture criterion, Bahr et al. [8] 
studied the same crack geometry in a plate of finite thickness. Jin and Feng [9] considered an array 
of parallel edge cracks with alternating lengths in an elastic strip subjected to a thermal shock and 
presented detailed results on the effects of crack length ratio and crack spacing on the thermal stress 
intensity factors (TSIFs). For functionally graded ceramics, Feng and Jin [10, 11] investigated the 
effects of crack length ratio on the TSIFs at the tips of long and short cracks and thermal shock 
residual strength using a singular integral equation technique.  
 
All of the analytical studies above assume that the FGM specimens are subjected to a sudden 
cooling condition at their surfaces, i.e., the boundary temperature immediately attains the ambient 
temperature. In practical applications, however, the cooling rates on the material surfaces are finite. 
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The objective of this work is to investigate the effects of cooling rate on the TSIFs for an array of 
parallel edge cracks with alternating lengths in a functionally graded ceramic plate. A linear ramp 
function is used to describe the rate of boundary temperature variations at the surfaces of the FGM 
plate. The remainder of the paper is organized as follows. Section 2 reviews a closed-form, 
asymptotic solution of temperature field for short times and the thermal stresses in the periodically 
cracked FGM plate. Section 3 describes an integral equation method to obtain the TSIFs at the tips 
of long and short cracks. Section 4 presents numerical results of TSIFs for an Al2O3/Si3N4 FGM.  
Section 5 provides concluding remarks. 
 
2. Temperature and Thermal Stress Fields 
 
This section reviews the temperature and thermal stress solutions for a long FGM plate with an 
array of parallel edge cracks with alternating lengths as shown in Fig. 1, where a1 is the length of 
the long cracks, a2 is the length of the short cracks, h is the crack spacing, and b is the plate 
thickness. The thermal properties of the FGM plate are arbitrarily graded in the thickness direction 
(x-direction). Initially the temperature of the plate is a constant T0 which can be assumed to be zero 
without loss of generality. The temperature then gradually changes to -Ta and -Tb at the surfaces x = 
0 and x = b of the plate, respectively. We use a linear ramp function to describe the variations of the 
boundary temperatures. The initial and boundary conditions for the heat conduction problem are 
thus 
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where T = T(x, t) is the temperature, t is time, and ta and tb are two temporal parameters describing 
the rates of temperature variation (cooling/heating rates) at the plate surfaces. The one-dimensional 
heat conduction in the plate is governed by the following basic equation 
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where k(x) is the thermal conductivity, ρ(x) the mass density, and c(x) the specific heat. 
 
Jin [12] obtained a closed form solution of the temperature field for short times in the FGM plate 
with continuous and piecewise differentiable properties as follows 
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respectively, and τ , τa and τb are the nondimensional times defined by 
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in which )0(0 κκ =  and )/()( ckx ρκ =  is the thermal diffusivity. In Eqs. (5) and (6), erfc( ) is the 
complementary error function and Ω1(x) and Ω2(x) are defined by 
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Figure 1. An FGM plate containing an array of periodic edge cracks with  

alternating lengths subjected to a thermal shock 
 

The above temperature filed induces thermal stresses in both longitudinal (perpendicular to the 
crack direction) and transverse (perpendicular to the x-y plane) directions in the FGM plate. The 
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growth of the periodic edge cracks, however, is caused by the longitudinal stress which has the 
following form when the cracks have not been considered 

 ( ) ( ) ( )2
0 0

, 1 1( , ) 4 6 , 6 12 ,
1 1

b b
T
yy

E x E x xx x dx x x dx
b b b b

αθ τ
σ τ αθ τ α θ τ

ν ν
⎡ ⎤⎞ ⎞⎛ ⎛= − + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟− − ⎝ ⎝⎠ ⎠⎣ ⎦

∫ ∫ , (9) 

where θ(x,τ) = T(x,τ)-T0, E is Young’s modulus, ν is Poisson’s ratio, and α = α(x) is the coefficient 
of thermal expansion. Here we assume that the FGM plate is thermally nonhomogeneous but 
elastically homogeneous, i.e., the Young’s modulus and Poisson’s ratio are constant. While this 
assumption imposes limitations on the application of the present model, there exist some FGM 
systems for which the Young's modulus remains approximately constant. Examples include TiC/SiC, 
MoSi2/Al2O3, Al2O3/Si3N4, and ZrO2/Nickel FGM systems.  
 
3. Thermal Stress Intensity Factors 
 

This section uses the asymptotic temperature solution (4) – (6) to calculate the thermal stress 
intensity factor (TSIFs) at the tips of long and short crack in an elastically homogeneous but 
thermally graded FGM plate (see Fig. 1).  The integral equation method is employed and the 
singular integral equations of the crack problem are given as follows 
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where the basic unknown variables f1(x1) and f2(x2) are defined by  
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with v(1)(x1, y1) and v(2)(x2, y2) being the displacements in the y-direction, x1, y1, x2 and y2 are 
coordinates defined by 
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r1, s1, r2, and s2 are the normalized coordinates  
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k11, k12, k21 and k22 are known kernels given by Feng and Jin[10], and T
yyσ is given in Eq. (9). 
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According to the singular integral equation theory [13], the solutions of Eq. (7) have the following 
form 

 1 1 2 2
1 1 2 2

1 2

( ) ( )( ) , ( )
1 1

F r F rf r f r
r r

= =
− −

      , (14) 

where F1(r1) and F2(r2) are continuous and bounded functions. Once the solutions of the above 
integral equations are obtained, the TSIFs at the periodic crack tips can be computed from  
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where KI
(1) and KI

(2) denote the TSIFs at the tips of the long and short cracks, respectively, KI
(1)* and 

KI
(2)*are the corresponding nondimensional TSIFs, ΔT = Ta, and α0 is the coefficient of thermal 

expansion at x = 0. In Eq. (15), F1(1) and F2(1) have been normalized by (1+ν)α0ΔT. 
 
4. Numerical Results and Discussion 
 
In the numerical examples, we use a graded system of alumina/silicon nitride (Al2O3/Si3N4) FGM 
for cutting tools applications to examine the effects of cooling rate on the TSIFs. The FGM is 
assumed to be a two-phase composite material with graded volume fractions of its constituent 
phases. The volume fraction of Si3N4 is assumed to follow a simple power function 
 ( ) ( / ) pV x x b= , (16) 
where p is the exponent determining the volume fraction profile. The material properties of the 
FGM are calculated using conventional micromechanics models [14] and the properties of Al2O3 
and Si3N4 are given in Table 1 [15]. In the numerical calculations, we only consider the loading case 
of Tb = 0 (the initial temperature), which means that only the cracked surface x = 0 of the FGM 
plate is subjected to a temperature drop. 
 
Fig. 2a shows the normalized TSIF KI

(1)* at the tips of the long cracks versus nondimensional time τ 
for various values of the cooling rate parameter τa. The crack spacing is h/b = 1, the length of the 
long cracks is a1/b = 0.1, the crack length ratio is a2/a1 = 0.2, and the material gradation profile 
index is p = 0.5. The TSIF under the sudden cooling condition (τa = 0, and hence infinite cooling 
rate) is also included. For a given cooling rate (Ta/τa), the TSIF initially increases with time, rapidly 
reaches the peak value and then decreases with time. The peak TSIF decreases dramatically with a 
decrease in the cooling rate (increasing τa). Moreover, the time at which the TSIF reaches its peak 
increases with a decrease in the cooling rate.  
 
Fig. 2b shows the normalized TSIF KI

(2)* at the tips of the short cracks versus nondimensional time 
τ. All the geometrical and material gradation parameters are the same as those in Fig. 2a. The TSIF 
versus time response exhibits similar trend to that at the tips of the long cracks shown in Fig. 2a. 
Comparing the results in Figs. 2a and 2b, we can see that the peak TSIF at the short crack tip under 
the sudden cooling condition is about the same as the corresponding value for the long cracks. The 
peak TSIFs under finite cooling rates (nonzero τa), however, are significantly lower than the 
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corresponding values at the tips of the long cracks. 
 

Table 1. Material properties of Al2O3 and Si3N4   
 Young’s 

modulus 
(GPa) 

Poisson’s 
ratio 

CTE 
(10-6/K)

Thermal 
conduc- 

tivity 
(W/m-K) 

Mass 
density
(g/cm3)

Specific 
heat 

(J/g-K) 

Fracture 
toughness

(MPa-m1/2)

Al2O3 320 0.25 8.0 20 3.8 0.9 4 
Si3N4 320 0.25 3.0 35 3.2 0.7 5 
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Figure 2a: Normalized TSIF versus nondimensional time at the tips of the long cracks 

(a1/b = 0.1, a2/a1 = 0.2, h/b = 1.0, p = 0.5) 
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Figure 2b: Normalized TSIF versus nondimensional time at the tips of the short cracks 

(a1/b = 0.1, a2/a1 = 0.2, h/b = 1.0, p = 0.5) 
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Figs. 3a and 3b show the normalized TSIFs at the tips of the long and short cracks, respectively, 
versus nondimensional time τ for a different crack length ratio a2/a1 of 0.6. All other parameters are 
the same as those in Fig. 2. It is seen that the trend of the TSIF versus time is similar to the case of 
a2/a1 = 0.2 shown in Figs. 2a and 2b. The peak TSIFs for the long cracks now are lower than those 
for a2/a1 = 0.2. However, the peak TSIFs for the short cracks are higher than those for a2/a1 = 0.2. 
The decreased peak TISF for the long cracks and the increased peak TSIFs for the short cracks are 
the results of enhanced interaction between the long and short cracks as the difference in the crack 
lengths is now smaller.  
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Figure 3a: Normalized TSIF versus nondimensional time at the tips of the long cracks 

(a1/b = 0.1, a2/a1 = 0.6, h/b = 1.0, p = 0.5) 
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Figure 3b: Normalized TSIF versus nondimensional time at the tips of the short cracks 

(a1/b = 0.1, a2/a1 = 0.6, h/b = 1.0, p = 0.5) 
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5. Concluding Remarks 
 
This work is focused on the effects of cooling rate on the thermal stress intensity factors (TSIFs) at 
the tips of parallel edge cracks of alternating lengths in an FGM plate. The cooling rates at the 
surfaces of the FGM plate are described by a linear ramp function. The TSIFs are obtained using a 
closed-form, short-time temperature solution and an integral equation method. Numerical results for 
an Al2O3/Si3N4 FGM system show that the peak TSIFs at the tips of both long and short cracks 
decrease with a decrease in cooling rate. The variations of the peak TISF for the long and short 
cracks with the cooling rate and crack length ratio exhibit a complex pattern due to the interactions 
between the long and short cracks. 
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