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Abstract: In the high cycle fatigue, the initiation of fatigue cracks is significantly affected by microstructure, loading 

conditions, and specimen geometry. However, fatigue life estimation traditionally considers microstructure and 

geometric effects via semi-empirical methods without explicit consideration of the early stages of crack formation, 

which tends to dominate the total lives in high cycle fatigue. Such a strategy has been useful for existing materials that 

have been characterized with extensive fatigue experiments, but is less applicable to the design of fatigue-resistant 

alloys or modification of existing alloy microstructures to enhance fatigue resistance. This paper employs a framework 

developed to assess the early stages of crack formation and growth through the microstructure in smooth and notched 

specimens. The methodology employs finite element simulations that render an unimodal grain-size microstructure and 

a crystal plasticity-based fatigue model that estimates 3D transgranular fatigue growth on a grain-by-grain basis. The 

crystal plasticity model parameters were calibrated for Ni-base superalloy RR1000. In these simulations, cracks form in 

near surface grains with highest slip-based driving force and then propagate through the field of adjacent grains. 
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1 Introduction 

In spite of its significance in industrial applications, the influence of microstructure on the early 

stages of fatigue cracks in engineering alloys is still poorly understood. The formation and early 

growth of fatigue cracks can consume a significant portion of the high cycle fatigue life and is 

strongly influenced by the size and shape of grains, and the crystallographic orientation. Fatigue 

models have been able to predict the fatigue life as a function of the microstructure by employing 

parameters aimed at reflecting the role of microstructure without strong physical connections. These 

methodologies can assess and perhaps compare materials, but they are not fully appropriate to 

design of fatigue-resistant engineering alloys. 

During the past decade computational simulations have been increasingly used for designing 

materials. These models simulate microstructure-sensitive mechanical responses with the aim of 

reducing experimental effort. Castelluccio [1][2] developed a computational methodology for 

predicting the number of fatigue cycles required to crack an individual grain with highest driving 

force. The algorithm employs finite element simulations and a crystal plasticity framework to 

compute nonlocal fatigue indicator parameters (FIPs) which are correlated with the cycles required 

to crack a grain. This methodology has been successfully employed to assess the effect of bimodal 
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grain size distributions on fatigue resistance [2]. 

This work employs similar fatigue and crystal plasticity models to assess the effect of multiaxial 

straining and stress concentration on early fatigue life. The finite element simulations are calibrated 

to represent RR1000 Ni-base superalloy and render the microstructure explicitly. The fatigue lives 

are correlated to a variant of the Fatemi-Socie FIP that is averaged over nonlocal volumes that are 

oriented as bands aligned with the crystallographic slip planes. The model considers the influence 

of grain size effects for fatigue cracks that nucleate and extend into neighboring grains. 

2 Modeling and simulation 

2.1 Constitutive model 

At the scale of individual grains we employ a physically-based crystal plasticity constitutive model 

for RR1000 superalloy adapted from the work of Lin et al. [3].  The crystallographic shearing rate 

is given by  
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in which 
( )  is the shearing rate of slip system  , ( )  is the resolved shear stress, T is the 

absolute temperature, Fo, p, q, 0 , τ0, µ, and µ0 are material parameters that may differ for 

octahedral and cube slip systems, as listed in Table 1 for 650°C, and kb is Boltzmann‟s constant. The 

evolution laws for slip resistance ( ( )S ) and back stress ( ( )B ) are written as 
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octahedral and cube slip planes (see Table 1). The initial values are specified as 0S  for the slip 

resistance and zero for the back stress. This formulation considers 12 octahedral and 6 cube slip 

systems and was implemented as a user-material subroutine (UMAT) in ABAQUS 6.9 [4] using  

an implicit integration scheme. Discussion of model parameters and their estimation can be found in 

Ref. [1].   

2.2 Fatigue driving force 

During crack nucleation and early growth, the local fatigue driving force is affected by the 

microstructure, which has particular implications for microstructurally small cracks (MSCs). Hence, 
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the driving force for early stage fatigue needs to be characterized with fatigue indicator parameters 

(FIPs) describing the local fields (rather than far field basis of the stress intensity factor in LEFM).  

The present approach quantifies the driving force with a crystallographic version of the 

Fatemi-Socie parameter adapted to evaluate the FIP on each octahedral slip system, i.e.,  
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where 
 p  is the cyclic plastic shear strain range on slip system  ,  n

 is the peak stress 

normal to this slip system,  y
 is the cyclic uniaxial yield strength of the polycrystal, and k=0.5, as 

proposed by Fatemi and Socie [5]. Several investigators have successfully employed approaches 

akin to the Fatemi-Socie parameter along with crystal plasticity formulations for studying the 

effects of microstructure on fatigue life [6][7]. The value of such a parameter was further explored 

by Reddy and Fatemi [8], who postulated that the Fatemi-Socie parameter represents the fatigue 

driving force and plays a role similar to that of the ∆K or the ∆J in predicting fatigue crack 

formation and early growth. Recently, Castelluccio and McDowell [9] correlated the Fatemi-Socie 

parameter with the cyclic crack tip displacement using crystal plasticity simulations. To numerically 

regularize the FEM discretization and also to represent the finite physical scale of the fatigue 

damage process zone, the αFIP  values are calculated at each integration point and then averaged 

along bands (i.e., nonlocal FIPs), parallel to slip planes across entire grains, as depicted in Figure 1.  

2.2.1 Life estimation  

This approach focuses on the interaction between small fatigue cracks and the microstructure at a 

mesoscale level; therefore, crack growth on a grain-by-grain basis. In other words, the number of 

cycles to crack the first grain (nucleation) is first computed, and then the cycles required to extend 

the microstructurally small crack within each of the neighboring grains is computed.  Each 

nonlocal FIP is employed in fatigue life correlations using a hierarchical approach to estimate the 

life to completely crack a grain along a band. The nucleation relation is assumed to follow the 

semi-empirical empirical law [6] 
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Table 1. Parameters of the constitutive model at 650°C for octahedral and cube slip systems. 
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Oct. 295 0.31 1.8 120 810 350 0.42 400 10 6024 72.3 

Cube 295 0.99 1.6 4 630 48 0.18 100 4.5 24 28.6 

Other: λ=0.85, 0


 
= 192GPa. Elastic constants: C11 = 166.2GPa, C12 = 66.3GPa, C44 = 138.2GPa. 
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where αg is an irreversibility coefficient and grd  is a length scale of the current grain calculated as: 

= ,
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in which ω
i
 is the disorientation factor for grain i,

 
Dst is related to the length of the band considered 

and D
i
nd relates to the length of all n intersecting bands in adjacent grains. The values of Dst and D

i
nd 

are calculated for each averaging band as the square root of the area of the band. The disorientation 

factor is computed as 

o
= 1

20
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Here, θdis is the disorientation angle between two grains, and the Macaulay brackets satisfy that 

<a>=a if > 0a , <a>=0  if 0a . Thus,   = 1 when there is no disorientation (i.e., the grain 

and the neighbor have exactly the same orientation and should be a single grain) and   = 0 if the 

disorientation is 20° or larger. The disorientation factor for randomly oriented grains results in 

non-zero values for fewer than 10% of the grain boundaries. 

The MSC crack growth rate is assumed to be controlled by the mechanical irreversibility of 

dislocations emitted from the crack tip and proportional to the crack tip displacement range, i.e.,  

 
th= FIP CTD ,
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where (A ~2) is a scaling constant that depends on microstructure attributes, ∆CTDth is a threshold 

that has a value close to the magnitude of the Burgers vector. The factor ф=0.077 measures the 

mechanical irreversibility at the crack tip process zone and depends on environment. The number of 

cycles to extend the crack front through the i
th

 grain along slip system α in the MSC regime, |
iG MSCN , 

is determined by integrating Equation (8) with respect to the crack length. The crack growth rate 

 

Figure 1: Schematic representation of elements, bands and grains in which FIPs are averaged to 

estimate transgranular fatigue crack growth. The implementation in a FEM model with unstructured, 

voxellated meshing is shown, with bands color coded and numbered for a single spherical grain. 
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depends on the crack length/size within the i
th

 grain, which varies from an uncracked to a fully 

cracked grain. To integrate analytically Equation (8), we consider that the mean evolution of 

FIP inside the grain follows a decreasing law, i.e.,  

 21
FIP FIP 1
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Here, ai is defined here as the fraction of the area of the i
th

 grain to have cracked (nondimensional 

measure of cracked area of slip plane within the grain), and FIPo

  represents the FIP value for the 

i
th

 grain on the α
th 

slip system along which ai is measured, before the grain is cracked. Interestingly, 

Equation (9) resembles the empirical laws proposed by Hobson et al. [10] [11] and Miller [12] and 

has been validated using FEM simulations [1]. 

After integrating, the total life consumed in the MSC regime ( MSCN ) is the sum of the lives for each 

grain involved in the growth process for a given 3D crack, i.e., 
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Here, 
HistoryN  corresponds to the number of cycles undergone since the band considered has 

intersected the crack perimeter, and is necessary to include since cracks grow in multiple grains 

along a 3D crack front. Further details can be found in Refs. [1][2]. 

2.3 Crack growth model 

To compute stress redistribution due to an increment in crack length, we employ an isotropic 

damage model along the bands having FIP values that lead to minimum fatigue lives. For the 

elements within these bands, the elastic stiffness tensor C  is degraded according to damage 

parameter d1, i.e., 

1= (1 )dC C
 

(13) 

Here, d1 varies from 0 (uncracked) to 0.99, at which point full damage is assumed. The elastic 

stiffness is degraded for those elements in bands along which the crack is assumed to grow. The 

degradation of the elastic stiffness requires a gradual increase of parameter d1 to achieve 

convergence of the FEM solution. Accordingly, the degradation is imposed over several time steps, 

i.e., for the current time step  it we write 
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For example, a value of = 2  was enough to increase d1 up to 0.99 by the end of the 1-second half  

loading cycle; of course,   can be varied to accelerate crack stiffness reduction and to allow for 

convergence while computing stress redistribution effects in the polycrystal over a few 

computational cycles. Of course, this represents evolution over a much larger number of applied 

fatigue loading cycles. The plus sign corresponds to the case in which the stress normal to the band 

is positive and the crack plane is in tension. On the contrary, if the stress normal to the band is in 

compression, the crack is assumed to be closed and d1 is decreased to zero at a rate proportional to 

the time step, as described by the minus sign in Equation (14). 

  When roughness- or plasticity-induced closure conditions are detected by virtue of compressive 

traction normal to the crack face on individual elements, the value of d1 is decreased to 0 such that 

the initial elastic stiffness is restored. Hence, the degradation of the stiffness tensor is performed on 

a grain-by-grain basis by increasing the parameter d1 in all the elements after predicting the path of 

the crack in the following grain. Such a prediction is performed every two computational loading 

cycles to allow for stiffness degradation and the update of the stress and strain fields. 

In summary, the fatigue algorithm starts by calculating the nonlocal FIP values on every band in 

every grain over the third computational cycle, and proceeds by calculating the number of expected 

cycles to nucleate crack on all bands for all grains using Equation (5). The elements within the band 

with the lowest nucleate life are marked as “cracked,” and the model applies again a couple of 

computational loading cycles to update the FIP values and to degraded (d1 increased) the stiffness 

tensor as necessary to represent crack growth. Thereafter, the algorithm computes the MSC life of 

all FIP averaging bands that intersect the crack perimeter and renders the elements in the band with 

minimum life as cracked. The simulation proceeds by applying further loading cycles, in which the 

stiffness tensor is degraded on the cracked elements to redistribute stress and plastic strain, while 

checking for grain level closure effects of cracked grains, and the MSC life is evaluated again on 

the remaining grains. Since we seek to describe the dominant crack, only one crack nucleates per 

realization. 

3 Simulation results 

3.1 Specimens and loading conditions 

Figure 2 depicts the C3D8R-element meshes employed for modeling smooth and notched 

specimens, each color representing a different crystallographic orientation. The grain size follows a 

lognormal distribution based on the algorithm by Musinski [13] with a mean value of 18µm. The 

straining sequence consisted of triangular relative displacement of the upper and lower boundary 

planes at a 0.05%/s strain rate under shear or tensile mode loading to achieve an overall nominal 

strain range of 0.8%; lateral faces are free of traction. Simulations with different strain ratios 

employed a similar strain range to assess only the effect of applied strain ratios (strain/displacement 

conditions).  

To achieve equivalence with tensile straining, the magnitude of the displacement vector in shear 

straining was computed by assuming an elastic model with cubic symmetry. The value of Poisson‟s 
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ratio was deduced to compute the equivalent pure shear strain for Rε = 0. The 0.8% uniaxial strain 

range is equivalent in shear to  

1(1 ) (1 )0.8% (1 0.3989)0.8% 1.119%eq           
  (15)

 

Thus, the upper and lower faces were displaced in shear up to a nominal shear strain of 1.119% for 

equivalence in this particular case. The Poisson„s ratio was deduced using an elastic model with 

cubic symmetry, i.e.,
  

 
12

11

66.3
0.399

166.2

C

C
    

(16) 

3.2 Crack growth vs cycles for smooth specimens 

Smooth specimens were employed to simulate shear and tension-compression straining at 650°C for 

under three strain ratios Rε = min max/  = -1, Rε = 0 and Rε = 0.5, all undergoing an equivalent 

nominal strain range of 0.8% at 0.05%/s strain rate. For each loading condition, a total of 10 

equivalent microstructure realizations were simulated. The simulations considered unidirectional 

periodic boundary conditions, with lateral faces free of traction. Figure 3 presents crack length vs. 

life on a semi-log scale. Each data point corresponds to extending the crack by one grain and only 

lives below 10
9
 are considered (otherwise considered as crack arrest, giving rise to run-out 

  

  

Figure 2. Example of voxellated meshes representing the explicit polycrystalline microstructure for 

axial straining of smooth (top) and notched (bottom) specimens. Triangular straining sequence is 

applied by displacing the upper and bottom faces of the meshes at 0.05%/s strain rate. 
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behavior).  These results support that uniaxial tension-compression straining is more detrimental 

than cyclic shear, by a factor of nominally two or greater on life. 

Fatigue crack nucleation rather than fatigue crack growth seems particularly influenced for Rε = 0 

and Rε = 0.5, which suggests that crack nucleation assisted by stress concentration (e.g., notch, pore, 

or inclusion) might exhibit a reduced dependence on the strain ratio. Furthermore, 

tension-compression fatigue life results seem to show slightly less variability, and for both 

displacement conditions, the variability seems to increase with decreasing strain ratio.  

Figure 4 presents an example of the stress-strain evolution for one realization in tension after 20 

straining cycles for three different strain ratios. As expected, higher strain ratios lead to higher 

tensile mean stresses. The mean stress evolves slowly and after 20 cycles the change is less 10%; 

therefore we may consider that the fatigue life estimations are performed at a relatively stable mean 

stress level for each strain ratio. Even when mean stress assessed may differ from a fully relaxed 

state, the fatigue model was calibrated under similar conditions [1], which reduces the inaccuracies. 

3.3 Crack growth vs cycles for notched specimens 

Figure 5 presents the simulation results for three strain ratios using models with a notch root radius 

of 144 µm and a similar microstructure. Compared to the smooth specimens, the results from 

models with a notch show a reduction in fatigue life of about an order of magnitude. As expected, 

the lower the strain ratio, the larger the fatigue life, while tension-compression simulations resulted 

in lower lives than shear loading. However, the separation in life between tension-compression and 

shear cases increases with decreasing strain ratio, which was not clearly observed in simulations 

with smooth specimens. Note that the cracks for the shear case did not nucleate at the notch, but 

grew in the bulk of the specimen. The computed results for tension-compression, which nucleated 

the crack at the notch, lie within two orders of magnitude on life. In the case of shear loading, the 

life is longer and exhibits greater scatter as the cracks formed in the bulk of the specimen. 

 

 Figure 3. Comparison of the results for strain ratios Rε = 0, Rε = 0.5 and Rε = -1 using simulations 

with unidirectional periodic conditions undergoing an equivalent nominal strain range of 0.8%. 
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4 Discussion and conclusions 

The simulations showed quantitatively the detrimental effects of higher strain ratios, which change 

orders of magnitude the cycles required to grow a crack of similar lengths. Furthermore, in all cases 

tension-compression straining was more damaging than shear straining, which has been reported in 

the literature for other materials [14][15]. The results for smooth specimens exhibited a spread of 

fatigue life over three orders of magnitude for strain ratios between Rε = 0.5 and Rε = -1, for shear 

and tension-compression loading. Notched specimens under tension-compression loading showed a 

smaller spread, which is explained by a reduction of the variability in nucleating a crack. This effect 

dominates over the reduction of the highly strained volume around the notch. In the case of notches 

under shear, the cracks nucleated within the bulk of the specimen (not at the notch), and the results 

are comparable to those found for smooth specimens. 

 

 

 

 Figure 4. Stress-strain responses of a smooth specimen microstructure realization and three strain 

ratios over 20 uniaxial straining cycles. 

 

Figure 5. Comparison of the results for strain ratios Rε = 0, Rε = 0.5 and Rε = -1 on a logarithmic scale 

for notched specimens undergoing an equivalent nominal strain range of 0.8%. 
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