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Abstract  This paper presents a 3D dynamic failure analysis of linear elastic body by using particle 

discretization scheme finite element method (PDS-FEM). PDS-FEM uses two sets of non-overlap 

characteristic function to discretize function and function derivative. Unlike ordinary FEM, PDS-FEM can 

easily calculate crack, which is the discontinuity in displacement function. The target is a thin epoxy plate 

with two anti-symmetric notches under uni-axial tensile boundary condition. A time depend failure criterion, 

called Tuler - Butcher criterion is applied. The simulation results are compared with the experimental results, 

which are captured by an image sensor at the rate of one million frames per second. In real world, no ideal 

isotropic homogeneous body exists. Disturbances exist everywhere. Crack is sensitive to local heterogeneity. 

Since the mesh configuration determines the candidate crack distribution in PDS-FEM, the uncertainty can 

be modeled by adding disturbance to the mesh configuration. By using Monte-Carlo simulation, the crack 

patterns observed in experiment, including bending, kinking and bifurcation are successfully simulated by 

using PDS-FEM. 

 

Keywords  Three dimensional dynamic simulation of fracture, stochastic model, brittle failure, 

photo-elastic experiment 

 

1. Introduction 
 

The simulation of fracture has been a challenging problem in solid continuum mechanics [1-2]. 

There are two difficulties in reproducing experiment results numerically: 1, accuracy and efficient 

numerical method is needed; 2, due to the limitation of observing technology, a stochastic model, 

which can represent the uncertainties, needs to be carefully designed. 

 

For simulation of crack growth, varieties of numerical methods have been developed, such as 

E-FEM, X-FEM [3], discontinuous Galerkin method and meshfree methods. However, the original 

version of these methods has two common drawbacks: (1), the bifurcation or branching could not be 

calculated, which is essential for brittle materials, such as epoxy resin, rock and concrete; (2), the 

crack configuration is simple, normally in one dimension, so complex and detail configuration 

cannot be expressed. Recently, the improved version of above methods has been proposed by many 

researchers. The static, quasi-static and dynamic analysis can be successfully carried out [4-7]. 

 

Besides aforementioned methods, the newly developed method, called particle discretization 

scheme finite element method (PDS-FEM) is another candidate [8], for its numerical efficiency and 

capability of calculating bifurcation. In order to verify the accuracy and numerically efficiency of 

this method, a thin epoxy resin plate with two notches located anti-symmetrically in the middle 

under uni-axial tensile has been carried out numerically and experimentally. The quasi-static state of 

PDS-FEM has been developed by Oguni et al [9]. The comparison results show similarity between 

the simulation and experiment results. 

 

In order to study the dynamic crack growth, we extend PDS-FEM to dynamic state [10]. PDS-FEM 

is originally formulated for Lagrangean at quasi-static state, and hence the extension to dynamic 

state is straightforward. Special attentions, however, have to be paid to time integration since 
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cracking releases strain energy and changes stiffness matrix drastically. High robustness is required 

for the time integration, and we adopt Hamiltonian formulation so that most robust algorithm which 

is proposed in the field of computational quantum mechanics can be employed for the time 

integration.  

 

In real world, there is no ideal isotropic homogeneous body. Various kinds of disturbances exist 

everywhere. Due to limitation of the observation technology, the material property and boundary 

condition can hardly measure accurately. The difference between numerical setting and reality is 

called disturbance. Since crack is sensitive to local heterogeneity, even with the same setting, the 

crack paths of experimental samples are still somehow different from each other. In this paper, the 

authors try to reproduce a fracture experiment of a thin epoxy resin plate. In order to model the 

heterogeneity, a stochastic model is proposed, which introduces certain perturbation to the 

homogeneous body. Then, a Monte-Carlo simulation is carried out, from which, the crack patterns 

observed from corresponding experiments are successfully simulated. 

 

The content of the present paper is as follows: section 2 briefly explains the extension of PDS-FEM 

to dynamic state. We formulate the dynamic extension of PDS-FEM by using discretized 

Hamiltonian, so that a robust algorithm can be applied to the time integration. Section 3 is devoted 

to discuss modeling of weak heterogeneity. The modeling is made by using different candidates of 

possible crack extensions, which is realized by using different meshes. Section 4 contains a 

Monte-Carlo simulation for a thin epoxy resin plate with a pair of anti-symmetric notches located in 

the middle. Also, the simulation results are compared with corresponding experiments, which are 

captured by a high frequency image sensor at the rate of 1 million frames per second. Concluding 

remarks are pointed out in section 5. 

 

2. Extension of PDS-FEM to dynamic state 
 

On the viewpoint of the numerical computation, it is not easy to analyze the crack growth, since 

cracking not only releases strain energy, but also changes the stiffness matrix. A robust algorithm 

that can handle such a change is required. The algorithm is also required to guarantee symplecticity, 

i.e., the total energy and momentum should be conserved during the crack growth. 

 

A robust algorithm of time integration has been studied in the field of computational quantum 

mechanics [11]. To implement such an algorithm, we formulate the dynamic extension of 

PDS-FEM using Hamiltonian. We start from the following Lagrangean of a linearly and 

isotropically elastic solid, denoted by B, with elasticity c, density  displacement u, stress and 

strain : 

    
1 1

, ; , : : + :
2 2B

L dv    u u ε σ ε c ε u u σ u ε . (1) 

 



     



 

                           Voronoi tessellation         Delaunay tessellation 

Figure 1. Two dimension decomposition by using particle discretization scheme 

The candidate 

crack path is 

limited to the 

boundary of the 

Voronoi blocks  
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The discretization is made by using dual Voronoi {

} and Delaunay tessellations {


}, and their 

characteristic functions {} and {
} are used as basis functions. Note that, the displacement is 

discretized by Voronoi tessellations, while strain and stress are discretized by Delaunay 

tessellations: 

 

 

       

( ) ( ),

, , , .

u x,t u t x

x t t x

 



  





    








. (2) 

The following discretized wave equation is derived from L and the discretized functions: 

    ' '

'

0M t u t   



  u K , (3) 

where M

 is the mass of the 

th
 Voronoi tessellation, the superscript ' stands for the '

th
 adjacent 

Voronoi tessellation. Note that K
'

 is the stiffness matrix of PDS-FEM. This K
'

 coincides with an 

element stiffness matrix of FEM with linear tetrahedron elements [8]. Also, it should be noted that 

Eqn. 3 automatically leads to a lumped mass matrix. No approximation is needed to derive the 

lumped mass matrix, unlike ordinary FEM. This is the advantage of PDS-FEM, since, as shown in 

Eqn. 3, displacement is discretized as a set of rigid body displacement, or a continuum is regarded 

as an assembly of rigid body particles. 

 

From this discretized wave equation, a discretized Hamiltonian of the following form is defined: 

 '1 1

2 2
H     


     q K q p p

M
, (4) 

where 
L







p
u

and 
 q u  are the momentum and displacement of the 

th
 Voronoi tessellation. 

 

We take advantage of the bilateral symplectic algorithm [12] as a robust algorithm of the time 

integration of Eqn. 4. The main advantage of this algorithm is that in order to achieve the accuracy 

of the order of t
N
 with t and N being time increment and an integer, it needs 2N times iteration for 

the interval of 2t. Until now the highest order derived for this algorithm are four. In this paper, the 

fourth order is used. 

 

3. Modeling of weakly heterogeneity for cracking 
 

For brittle materials, it is usually observed that a crack propagates in an unpredictable manner, when 

subjected to dynamic loading. For instance, kinking and brunching are induced during the process 

of crack growth, or shattering due to multiple cracking is observed at high loading rate.  

 

The key task of this paper is a numerical experiment that uses a set of weakly heterogeneous bodies. 

In the numerical model, several parameters, such as failure criteria, material properties, flaws’ 

positions, can hardly be obtained accurately. However, it is not necessary at all to make all these 

parameters to be the stochastic variables, we can assign only a few to be stochastic variables, and 

others can be assigned as constants according to experience for simplicity. In this way, all the 

variability of unknown parameters can be represented by the designed stochastic variables. 

 

Generally speaking, two methods can be used to model heterogeneity, adding perturbation to 

material properties of either deformation or fracture. PDS-FEM takes a simple treatment of weak 

heterogeneity, as: material properties are uniform except for a parameter for fracture, and cracking 

are allowed only on some of predetermined weak plane segments. 
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PDS-FEM uses a boundary facet as a set of pre-determined weak plane segments for possible crack 

extensions. The location of the weak plane is pre-determined by mesh configuration. In order to 

model the weak heterogeneity, we add disturbance to the location of mesh mother points, from 

which, a lot of samples with slightly different fracture property can be generated. However, there 

are two difficulties in this method: generating unbiased distribution may result in ill-shaped 

Delaunay elements, i.e., some elements with large aspect ratio; a simple solution of forcing the 

aspect ratio of the Delaunay elements in a certain range leads to biased distribution of some clusters 

of Voronoi mother points. The unbiased distribution of the Voronoi mother points and the aspect 

ratio control of the Delaunay elements are in a trade-off relation. As a compromise, we start from 

one distribution of the Voronoi mother points with majority of the Delaunay elements being well 

shaped, and modify this distribution randomly to generate other distributions without changing the 

geometry of the target model. 

 

The mesh size is regarded as a parameter which represents the degree of material heterogeneity; the 

size becomes smaller as the distribution of material parameters is closer to being uniform. For 

designing the stochastic model of a real experiment, we need to identify the degree of material 

heterogeneity or the mesh size. However, with limited observation equipment, the degree of 

heterogeneity of real samples cannot be measured easily. Therefore, the authors try to start from a 

standard mesh configuration, which takes a balance between the accuracy and computation 

overload. If the crack path solutions of the numerical experiments show that the variability is not 

large enough to include the experimental results, then we have to find ways to increase the degree 

of heterogeneity in the stochastic model: (1), apply larger mesh size, while ensuring the required 

accuracy; (2), add additional perturbation to material properties of deformation. Thus, in the 

numerical experiment presented in section 4, we start from a standard mesh configuration as this: 

finer meshing is used near the crack tip, to allow a wider choice of crack extension, while meshing 

becomes coarser farther from the crack tip to save computation overload. 

 

4. Monte-Carlo simulation of crack propagation 
 

This section carries out a numerical experiment of executing Monte-Carlo simulation of 

heterogeneous samples, in order to reproduce the real experiments’ phenomena. 

 

4.1. Problem setting 

 

We study a thin plate of 5×24.5×140 mm, which includes two anti-symmetric parallel notches of 

height 0.6 mm; see Fig. 2. It is assumed that the material is linearly elastic; see Table 1. For 

dynamic analysis of brittle material we need to consider the time effect, since dynamic fracture is a 

time-dependent phenomenon [13-14] which depends on the stress pulse duration, also from 

experiment study, it is observed that, the material strength is higher than static strength for high 

loading rate [15-16]. Concerning about this, a time dependent material strength failure criterion 

called Tuler Butcher criterion [17] is adopted in this paper: 

  1 0
0

f

fdt K
 
   , (5) 

for ≧≧0, where  and  are a threshold stress and the maximum stress, f 
is fracture 

duration and Kf is the stress impulse for failure. This criterion means that a crack grows if 

accumulated stress in fracture duration reaches a critical value. It is assumed that  and Kf = 10
-8

, 

 is equal to the static tensile strength, and f is assigned to be the time step used in time 

integration; these parameters should be calibrated according to experimental data, which are not 
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available at this moment. However, as mentioned above, the variability of the parameters can be 

presented by the disturbance in mesh configuration.  

 

Table 1. Material properties of epoxy resin 

Young's modulus (Mpa) 3300 

Poisson's ratio 0.38 

Tensile strength (Mpa) 35.0 

Epoxy density (kg/m
3
) 1180 
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Figure 2. Analysis model 

 

The force boundary condition is posed. The bottom end of the model is fixed, and the top end is 

pulled up in longitudinal direction. The loading rate is set to be 5N/s. Since the loading rate is small, 

the initial load of simulation is set to be 135N to save computation time. No element failure exists 

under this initial load. Following the PDS-FEM discretization, the crack tip is modeled as a notch 

with 0.6 mm height; the vertical surface of the notch is discretized by using 2 elements. The average 

mesh size is 1.0 mm at the top and bottom surfaces of the model to save computational overload. 

The time increment is set to be t = 5.0x10
-9

s.  

 

200 samples with slightly different mesh configurations or distributions of candidate crack path for 

PDS-FEM are prepared for Monte-Carlo simulation. The number of samples is decided by checking 

the convergence of average crack path position through the specified cross-sections. 

 

4.2. Simulation results and experimental comparison 

 

For numerical simulation, the crack patterns can be classified into two groups: (1), the crack paths 

are symmetrically distributed; (2), one crack is fully developed horizontally from either of the 

notches. Fig. 3 shows eight typical crack path solutions of the model with small heterogeneity. 

Bifurcation is also observed in the simulation results; see Fig. 3.5~Fig.3.8. 

 

In order to record the development of crack growth and stress changes of the epoxy resin thin plate, 

an ultra high speed video camera, which can capture images at the rate of 1 million frames per 

second, is used herein [18]. The photo-elastic technology [19] is used to show the stress distribution 

of experimental samples. Fig. 4 shows the final stages of four typical photo-elastic fringe patterns. 
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Within 16 samples, no sample with perfect anti-symmetric distribution of the two crack paths has 

been found. This is because the number of experimental samples is too few to include a sample with 

sufficiently homogenous material property and symmetrical boundary condition at the same time. 

The typical crack patterns can be classified into two groups: (1), one main crack path develops from 

either one of the two notches; (2), the two crack paths are more or less anti-symmetrically 

distributed. From experiments, some cracks bifurcate at the end of experiments.  

 

    

         3.1                 3.2                 3.3                3.4 

  

         3.5                 3.6                 3.7                3.8 

Figure 3. The typical crack paths projection into YZ plane 

 under force boundary condition of loading rate 5N/s  

 

Among 200 numerical samples, we find the samples, whose crack paths coincide with experimental 

results. In order to make further comparison between the simulation results and experimental results, 

the stress distribution of simulation has been converted into photo elastic fringe patterns. Fig. 5 and 

6 shows the experimental photo-elastic fringe patterns and the numerically synthesized fringe 

patterns. From these comparisons, the crack growth processes of these two samples are successfully 

simulated by the method proposed in this paper. 

 

       

4.1            4.2             4.3             4.4 

Figure 4. Photo elastic frames of experiments’ final stages, 100t s  (with colors reversed) 

 

               Experiments 

40t s            70t s           100t s  

                 

(a), fringe patterns of experimental sample 4.1 
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               Simulations 

0 76,179,191t s   0 +40t t s         
0 70t t s          

0 100t t s   

                 

(b), synthesized fringe patterns of numerical sample 3.3 

         

(c), crack growth process of numerical sample 3.3 

Figure 5. One main crack path 

 

               Experiments 

30t s             50t s            70t s  

                  

(a), fringe patterns of experimental sample 4.4 

               Simulations 

0 76,179,191t s    0 + 3 0t t s         0 50t t s          0 70t t s   

                  

(b), synthesized fringe patterns of numerical sample 3.6 

                            
(c), crack growth process of numerical sample 3.6  

Figure 6. Bifurcation 

(The colour of all images in Fig. 6.a and b has been reversed, since the records are too dark to see.) 

 

Before crack starts, the experimental fringe patterns and simulation results show significant 

similarity. However, when crack develops, the stress distribution of the simulation becomes blurred. 

There are three possible reasons for this: 

(1) The mesh density is not large enough near the crack tips. In the simulation, the element size is 

still large, so the energy of the stress wave released from broken elements is significant. On 

the contrary, the granularity of the epoxy resin is small, and the energy released from the 

broken of crystalline grain is small and continuous in real experiments. 
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(2) Friction, thermal as well as acoustic energy consumption mechanics due to cracking have not 

been considered in this simulation. The released strain energy blurs the simulated 

photo-elastic fringe patterns. 

(3) Ductile fracture may happen in the experiments under indoor temperature. 

 

5. Conclusion 
 

There is no ideal homogeneous body in the world. In order to model the heterogeneity, PDS-FEM 

offers a nature way by adding disturbance in the mesh configuration. This paper conducts a tensile 

fracture experiment of a thin epoxy resin, and builds a stochastic model with the distribution of 

candidate crack path set as stochastic variables. Monte-Carlo simulation is carried out. With 

specified basic mesh configuration, the simulation results reproduce the crack growth of 

corresponding experiments, including bending, kinking and bifurcation. The heterogeneity is 

successfully modeled. 

 

Before crack develops, the stress distribution of simulation shows great similarity with experimental 

photo-elastic fringe patterns captured by a high speed camera. When crack begins, the fringe 

patterns of simulation become blurred. Three possible reasons have been proposed and more 

realistic problem setting is needed to increase the similarity between the results of simulation and 

experiment in future study. 
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