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Abstract: Description of crack initiation and crack growth is a principal aim of numerical simulations in 
fracture mechanics. In this work, we have established a non-local damage model based on the fracture 
mechanics for brittle materials. This non-local model associates the classical failure criteria for non-cracked 
materials and the Griffith criterion for cracked materials throughout a non-local approach. Consequently, this 
model can be used to predict the crack initiation as well as the crack growth. The maximal principal stress 
criterion was considered in the proposed non-local framework. It was shown that after the non-local 
treatment, the classical failure criteria can be used in the prediction of crack initiation and crack growth with 
different failure mechanisms. By using the proposed model, we carried out several numerical simulations on 
different specimens in order to assess the fracture process in brittle materials. From these studies, we can 
conclude that the present model can be used to deal with crack initiation and crack growth in brittle materials 
with high accuracy and efficiency. 
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1. Introduction 
 
The fracture prediction of structures made of brittle materials is an important issue in engineering 
designs. In real structures, the failures are often initiated from a few geometrical weaknesses near 
which stress concentrations are formed. The stress concentrations are of many types and different 
levels. The failure prediction for all these stress concentrations is an essential research topic for 
scientists and engineers. However, it seems that fractures can be accurately predicted only for few 
types of stress states as so far. For brittle materials, failure criteria for two simple situations are 
commonly accepted: 
1: Under uniform uniaxial tension, fracture occurs when the maximum tensile stress reaches the 
ultimate stress of the material: 

cσσ ≥  (1) 

2: For solids including a macrocrack, the crack grows when the Griffith criterion is fulfilled: 

cGG ≥  (2) 

where G and Gc are respectively the energy release rate and its critical fracture value. 
Unfortunately, these criteria have to be used separately: one for damage initiation and another for 
crack growth. In the cases when the stress distribution is not uniform but does not present a crack 
singularity, these criteria are no longer sufficient to describe accurate fracture conditions. Many 
factors such like stress gradient, multi-axial stress state or structure size may influence the material 
strength. With the aim of unifying these criteria in a single damage model and extending them to 
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more general cases, numerous fracture and damage models were proposed in the literature.  
 
When the stress concentration presents a singularity weaker than the crack one, such a singularity 
can be found in the cases of sharp notches, interface cracking or cracks in ductile materials, criteria 
based on finite fracture mechanics were developed and reported in the literature. In simple words, 
these criteria are kinds of combinations of (1) and (2). [1-5]. Another class of fracture criteria was 
issued from the so-called cohesive models [6-10]. In all these criteria and models, one can 
distinguish a length scale parameter, such as the critical distance from the crack tip in finite fracture 
mechanics or the maximum separation distance in cohesive models.  
 
The finite fracture concept can also be found in damage analyses. A wide variety of damage models 
have been proposed on the basis of continuum damage mechanics by introducing a length parameter 
[11-15]. The nonlocal models in a continuum damage setting, the gradient theory based damage 
models, the damage gradient models are some of the principal advances in this direction.    
 
In this work, we have constructed a damage model by associating the maximal stress criterion with 
a non-local formalism. Moreover, equivalence has been illustrated between this non-local model 
and the Griffith-Irwin fracture criterion for crack propagation. Using the established non-local 
damage model, we carried out detailed numerical simulations on different specimens in order to 
study the efficiency and accuracy of the present approach. The numerical results show that the 
proposed damage model is capable to simulate the crack initiation as well as the crack growth in 
brittle composites with highly realistic description.  
 
2: Non-local damage model 
 
Numerous continuous damage models exist in the literature. In this work, we will use a simple 
failure criterion for brittle materials, i.e. the instantaneous damage model on the basis of the 
maximum stress criterion, namely: 
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(3)  

where 1σ is the maximal principal stress and cσ is the ultimate tensile stress of the material. It is 

clear that other more elaborate damage evolution laws exist and may be more efficient and 
physically more realistic for this class of materials. In the present work, (3) is adopted for 
simplicity. 
 
Even though this strength criterion is commonly used in failure assessment of a non-cracked 
structure, however, it is not suitable to describe fracture due to cracks because of the stress 
singularity near the crack tips. In order to overcome this shortcoming, various methods have been 
proposed. Among these, the so-called non-local approaches are widely used. The basic idea of this 

approach consists in replacing the local damage driving force, i.e. 1σ  in the present case, by its 
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weighted average over a representative volume V [11]: 
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In Equation (4), α(x- y) is a space weighting function which describes the mutual non-local 
interactions and depends only on the distance between the source point x and the receiver point y. 
By simplicity, we write: 
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where yx −=r ; R is the radius of non-local action which defines the size of interaction zone for 

failure processes.  
 
By means of the non-local principal stress, the damage model (3) can be rewritten as follows: 
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3: Connection to the Griffith-Irwin criterion 
 
In this section, we will prove that the non-local damage model (6) can be connected to the 
Griffith-Irwin criterion and therefore, can be used to predict crack growth. Consider a mode-I 
loaded macro-crack. According to the Williams asymptotic solution [16], the near-tip first principal 
stress is modulated by the stress intensity factor KI as follows: 
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Due to the symmetry, the maximal non-local principal stress is located at a point on the crack axis 

near the crack tip: 0,0 == θrr . Therefore, from (4), (5), and (7): 
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On the one hand, if we assume that ( )01
~ rσ  is the maximal value of ( )θσ ,~

1 r  near the crack tip, the 

element at the crack-tip is damaged when ( ) cr σσ =01
~  according to the damage criterion (6). On 

the other hand, from the Griffith criterion of fracture, the crack grows when the energy release rate 

G attains its critical value cG . For mode-I cracks, this criterion is equivalent to the Irwin criterion 

IcI KK ≥ , where IcK  is the critical stress intensity factor. Therefore, the parameters R and 0r  
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can be found by resolving the following equation: 
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By using the non-local scheme (4) and with R calculated from Equation (9), the damage model (6) 

can directly be used to predict the crack growth. To this end, we just need to find the point ( )00 ,θr  

near the crack tip where the non-local principal stress is maximal: when the non-local stress attaints 

the material strength, the crack grows to the point ( )00 ,θr  according to the Griffith-Irwin criterion.   

 
The above-mentioned damage model was implemented into a Fast Fourier Transfer (FFT) code. The 
iterative method on the basis of FFT was originally proposed by for homogenizing linear and 
nonlinear composites [17]. The FFT-based formulation for a periodic heterogeneous cell with 
damage was developed according to the original FFT scheme [18]. Since an element in a structure 
is linearly elastic before its complete damage, the method of crack propagation evaluation used in 
this work is very similar to that adopted in linear fracture mechanics: An elastic calculation is first 
carried out for a cracked structure, and then crack progression and the corresponding remote load 
are determined according to the damage criterion (6). This procedure is then repeated after each 
small crack progression in the structure 
 
4: Numerical examples and discussion 
 
In this section, we will carry out a series of numerical calculations in order to assess the 
performance of the present fracture model in predicting the crack evolution in brittle and 
quasi-brittle materials.  First, we will verify its accuracy in predicting crack growth with a cell 
containing a central crack under pure mode-I loading. Then cells with more complicated 
microstructure will be considered in order to evaluate its efficiency and potentiality. 
 
4.1: Cells with a central crack 
 
The first numerical example is a plane stress plate containing a central crack. In the numerical 
simulations, the dimension of the plate is 2h×2h =10×10mm2 with a central crack of different sizes, 
namely a = 0, 0.1, 0.3, 0.5, 1, 2, 3 and 4mm, here a = 0 represents a non-cracked plate. The stress 
intensity factors of such cracks can be found in any handbook of stress intensity factors.  The 
mechanical properties of the material are: Young’s modulus E = 3000 MPa, Poisson’s ratio ν = 0.3, 

the ultimate stress σc = 72MPa, the critical stress intensity factor mmMPa36=IcK , the non-local 

action radius R=0.105mm and the radius of the damaged zone rd=0.05mm. In order to investigate 
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the influence of the resolution finesse on the numerical results, the cell was discretized using 
different grids of regularly spaced Fourier points. The resolutions used for discretization are 
100×100, 200×200, 400×400 and 600×600 pixels. The pure mode-I load is prescribed by imposing 

an average strain { }122211 EEE=E  { }03.0111 −= E .  
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Figure 1:  Normalized stress intensity factor IcI KK and normalized remote stresses cσσ ∞ as 

function of normalized semi-crack length Ra  for mode-I loaded cracks at fracture 
 
We first calculated the remote tensile loads ∞σ  for crack growth according to the damage criterion 
(7). The calculations were carried out for different crack length and with different discretization 
resolutions. The results of these calculations are reported in Figure 1. In this figure, the stress 

intensity factors are normalized by the critical value IcK  ; the remote stresses are normalized by the 

ultimate stress cσ of the material and the crack length is normalized by the non-local action radius 

R. From this figure, several remarks can be made: 
1. When the crack is sufficiently long with respect to the non-local radius R ( Ra 3> ), the 

stress intensity factors evaluated from the present non-local damage model for crack growth 
equal correctly the critical stress intensity factor of the material. This result confirms that the 

proposed damage model is equivalent to the criterion IcI KK ≥  for mode-I cracks; 

2. When the FFT discretization is sufficiently fine, the proposed damage model is independent 
of the FFT grid resolution.  

3. The remote stress at fracture tends to the ultimate stress of material as the crack length tends 
to zero. In this case, the proposed crack growth criterion degenerates to the maximum stress 
criterion for non-singular stresses. 

 
4.2: Cracking in concrete 
 
The second example deals with a recurrent problem in concrete mechanics. The concrete is often 
modeled by a 3-phase particle composite where stiff and strong aggregate particles are embedded in 
a weaker and softer cement matrix. A third phase exists between these two phases, namely a thin 
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zone enveloping the aggregate particles. This thin zone of extremely weak material is the interfacial 
transition zone (ITZ). In the composite either the ITZ phase or the matrix phase may percolate. In 
the literature, the fracture of such a system is usually studied by means of lattice models constructed 
of bar or beam network [19-21]. 
 
In this example, a basic cell of 90×90mm² was discretized by a 600×600 FTT grid. The circular 
particles of diameters varying from 2 to 12mm were arbitrarily distributed in the cell. The thickness 
of the ITZ was chosen as 0.3mm. This thickness includes at least 2 pixels with the used grid. The 
density of the particles and ITZ attains 20% in volume. Following material constants were used in 

the simulations: =)(matrix
cσ 10MPa; =)( ITZ

cσ 5MPa; ∞=)( particle
cσ for ultimate stresses; =)(matrixE  

20000MPa; =)( ITZE 30000MPa; =)( particleE 40000MPa for Young’s moduli 

and mmK matrix
Ic MPa20)( = , mmK ITZ

Ic MPa10)( = and ∞=)( particle
IcK for critical stress intensity 

factors. A traction load { }03.0111 −= EE  is prescribed on the cell. By resolving Equation (9), 

we obtained the non-local action radius R=1.5mm. The radius of the damaged spot is taken as 
rd=0.5mm. As this spot can cover both matrix and ITZ, in practice, we take precautions such that 
the broken zone contains only points in the matrix or only points in the ITZ according to the 
location of the maximal non-local principal stress.   
  
The results of the numerical simulations are presented in Figures 2. Figure 2a shows a basic cell 
with matrix in gray, particles in black and ITZ in white. Global response on average stress-strain is 
plotted in Figure 2d. Here the average stresses are normalized by the ultimate stress of the matrix. 
The average stress-strain curve of the cell clearly shows a quasi-brittle behavior that is inherent to 
concrete. The crack growth pattern at load peak is illustrated in Figure 2b. From this figure, we can 
observe that the pre-peak micro-cracking essentially occurs in the ITZ, which are the weakest phase 
confined to the outer rim of the stiff aggregates. This damage stage constitutes the entire hardening 
phase of the global response. After the peak, the cracks enter into the matrix. The crack growth 
pattern at the end of load is shown in Figure 2c. At this stage, the bridging between different 
damaged ITZs leads to rapid stiffness decrease of the cell. These results agree with those obtained 
in the literature using lattice analysis [19-21]. 

 
(a)           (b) 
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Figure 2:  Concrete plate containing unbreakable particles enveloped by ITZ (a), crack patterns at 
peak of the loading (b), at the end of the loading and global response (d) of the concrete plate 

 
4.3: Fracture in laminate composites 
 
Let’s consider a plane strain composite laminate cell of dimension 20×18.2 mm² formed by 3 
phases: matrix, fibres and interfaces. The thicknesses of these layers are: 0.625mm for matrix, 
0.625mm for fibres and 0.025mm for interphases. The entire cell was divided into pixels by a 
400×728 Fourier grid. Each layer of the composite is assumed to be linearly elastic and isotropic. 
The material parameters of each component are listed in Table 1: 
 

Table 1: Material constants of the components 
 E (MPa) ν σc (MPa) KIc (MPa√mm) R (mm) 
Matrix (epoxy) 5100 0.35 100 50 or 200 0.105 or 1.486 
Fibre (carbon) 210000 0.27 1400 700 0.105 

Interphase 10451 0.3483 40 or 60 20 or 30 0.2906 
 
The external loads can be applied by imposing average stresses Σ11 > 0, Σ22 = Σ12 =0 or average 
strains E11 > 0, E22 = E12 =0. The FFT simulations were carried out step by step with small crack 
growth (about 0.1mm) at each step until the full failure of the cell. We present hereafter a FFT 
simulation with a reference configuration, i.e., the basic cell subjected to a uniaxial tension by 
imposing average stresses Σ11 > 0 and Σ22 = Σ12 = 0 as remote loads. 
 
Figure 3a illustrates the global response, i.e., the E11−Σ11 curve of the cell during the loading. 
Figures 3b, shows the fracture patterns of the cell at the end of the failure process. With the aid of 
these figures, we can describe the fracture process of the composite as follows:  
 

1. Under uniaxial tension, the global response of the composite laminate presents a saw-tooth 
snap-back feature. Each tooth represents the crack growth though a fibre layer;  
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2. When a short crack grows in a layer of matrix and meets a fibre, a high level load is needed 
to overcome this energy barrier. It first deviates a little into the interface or in the matrix 
before entering in the fibre; 

3. When the crack grows in a layer of fibre and meets the matrix, it deviates slightly in the 
matrix before penetrating into the matrix. As the matrix strength is much lower than that of 
the fibre, the remote load drops significantly;   

4. As the transversal main crack grows and becomes longer, the length of its deviations into the 
interfaces increases when it meets a fibre; 

5. We can remark that the interface debonding acts as a crack arrestor as described in previous 
studies [3]. When the crack propagates in an interface, the crack tip mode mixity varies from 
mode I toward mode II. Its growth requires more and more energy according to the interface 
fracture criterion (Equation 15); 

 
As a result of the interface debonding, the final fracture surfaces take a stair form as observed in 
previous experimental studies [22-23]. 
 

0

100

200

300

400

500

600

700

0 0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008 0,009

E11

Σ
11

(M
Pa

)

 
(c)       (d) 

Figure 3: Global response (a) and fracture patterns at the beginning (b), the middle (c) and the end 
(d) of the failure process of the basic cell under uniaxial tension 

 
5: Discussions and concluding remarks 
 
In this work, we have established a non-local fracture model and resolved it by using the Fast 
Fourier Transforms (FFT). The maximal stress criterion was adapted by means of the non-local 
concept in order to describe the fracture in brittle and quasi-brittle materials. The non-local model 
enables the predicted damage to be independent of the grid size. Moreover, the proposed model is 
equivalent to the Griffith-Irwin criterion when a macro-crack is formed. Consequently, the proposed 
fracture model is capable to predict crack initiation as well as crack growth. Comparisons with 
analytical results on pure mode-I cracks show that the proposed approach is highly efficient and 
accurate. 
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Through the examples above-presented, we can confirm that the proposed non-local crack growth 
models are highly accurate and efficient for the prediction of crack onset and crack propagation. 
Fracture in complicated microstructures can easily be simulated. Another notable advantage of the 
present method is its capacity to evaluate multiple crack growth as it doesn’t require the calculation 
of the energy release rate at each crack tip. The theoretical concept of the proposed non-local 
fracture criterion is clear and simple. The numerical model is robust, easy to apply to different 
engineering structures subjected to thermal shock. 
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