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Abstract  This work is concerned with the analysis of failure of adhesive joints. Typically adhesive joints 
fail due to cracking of the adhesive with cracks originating from the reentrant corner of the adherend and the 
adhesive. A failure model based on a coupled stress and energy criterion settled in the framework of Finite 
Fracture Mechanics (FFM) is proposed in this work. The main idea of coupled criteria in FFM is that cracks 
of finite size are predicted when a stress criterion is fulfilled on all points of the considered crack and 
simultaneously an energy criterion is fulfilled. 
A failure model for adhesively bonded single lap joints is worked out that makes use of an extended weak 
interface model. Its closed-form analytical nature allows for an efficient formulation of the non-linear failure 
criterion. The effects of the involved geometric parameters are examined in detail. A comparison of the 
failure load predictions to experimental results is given and shows a good agreement. It is shown that the 
effect of the adhesive layer thickness is incorporated correctly. The failure model and its implications on the 
understanding of failure of adhesive joints are discussed in detail. 
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1. Introduction 
 
Adhesive joints can be an interesting alternative joining method. They have several distinctive 
advantages over other joining techniques as e.g. welding or bolting. Adhesive bonding allows for 
large surface joining of thin-walled structures that can have dissimilar materials. The resulting joint 
has a smooth surface and a sealing function is given. But uncertain failure load predictions and 
lacking knowledge of failure mechanisms still hinder the widespread use of adhesive joints. To 
make use of their advantageous features a better understanding of this joining method must be 
achieved. In the last decades many researchers have worked on an improved understanding of 
adhesive joints. An overview on the performed research can be found in the comprehensive 
textbooks of this field, e.g. [1,5].  
Failure models for adhesive joints mainly make use of three different approaches, namely strength 
of materials, fracture mechanics and damage mechanics. Most of the works given in literature focus 
on strength of material approaches as it has the longest history and it is well known. Unfortunately 
these approaches lack in the correct description of some important features. Various effects of the 
involved geometric parameters of a simple joint configuration cannot be fully described by these 
approaches. A typical outcome is for example that the strength of the adhesive seems to depend on 
certain geometric parameters. No solid physical explanation can be given for such a relation. The 
aim of the present work is to present a new failure model for adhesive joints that correctly describes 
the effect of the geometrical parameters and makes accurate predictions for the failure load. 
 
2. Theoretical background 
 
2.1. Coupled stress and energy criterion 
 
In this work a coupled stress and energy criterion [11] is used to predict crack initiation. The 
criterion requires two basic material parameters: the strength of the material and the fracture 
toughness. The criterion is settled in the framework of Finite Fracture Mechanics (FFM) [9] that  
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Figure 2. The considered single lap joint configuration 

 
2.2. Linear elasticity solution for the single lap joint 
 
To obtain an efficient failure model a closed-form solution of the mechanical behavior of the single 
lap joint has been chosen in this work. Since the pioneering works by Volkersen [17] and the work 
by Goland and Reissner [8] many linear-elasticity solutions for the single lap joint have been 
developed and proposed in literature. Previous works by the authors [18,19] have shown that the 
simplified models by Volkersen and Goland-Reissner can be used to study the failure behavior of 
single lap joints but not all effects are covered to the full extent. In this work an extended weak 
interface model is used to model the adhesive joint, the model proposed by Ojalvo and Eidinoff [14]. 
The distinctive feature of this model is an extended consideration of the adhesive layer thickness 
effect and a linear distribution of the shear stresses in the adhesive layer.  
Let us consider a single lap joint under axial loading F as shown in Fig. 2.. The height of the 
adherends shall be h , the thickness of the adhesive layer t  and the length of the overlap shall be L . 
The width of the joint is denoted as b . Young's modulus of the adherend ist denoted as xE  and 
Young's modulus of the adhesive as aE . The respective Poisson's ratios are denoted as   and a . 
The shear modulus of the adhesive layer is denoted by aG .The axial coordinate x  runs from the 
middle of the adhesive layer. Due to the large deformations of the adherends due to bending a 
non-linear dependence of the bending moment at the end of the overlap to the axial force F is 
used: 

 ( )
2

h t
M k F F


   (4) 

with ( )k F  being the non-linear moment factor. In literature many approaches can be found for 
defining this moment factor. In this work the moment factor given by Tsai and Morton [16] is used: 
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The peel stress in the midplane (index 0) of the adhesive layer is obtained as follows [14]:  
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The constants 1A  and 2A  have to be obtained from the following boundary conditions. 
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The shear stress in the adhesive layer can be given as 
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As typical for weak interface models, it is assumed that crack advancement corresponds to a 
shortening of the overlap length. For the case of cracks emerging from one reentrant corner of the 
adherends and the adhesive layer the following relationship of the differential energy release rate to 
the peak stresses at the end of the overlap can be derived from the energy stored in the adhesive 
layer at the end of the overlap: 
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As outlined previously the incremental energy release rate is to be obtained from the differential 
energy release rate by integration. Of course, it must be considered that the peak stresses change 
when the overlap length decreases with higher crack lengths.  
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This integral cannot be solved in closed-form analytical manner but must be solved with a 
numerical integration scheme. 
 
3. The optimization problem 
 
As discussed previously it is necessary to solve the optimization problem (3) posed by the coupled 
stress and energy criterion (1) to identify the failure load of the joint. For the stress function f  the 
maximum principal stress criterion is used in this work. In the case of the presently used simplified 
model of the single lap joint it reads: 

  
2

20 0( ) ( / 2
2 2ij cf z t
   

 
      

 
  (15) 

As the incremental energy release rate has to be obtained by numerical integration and the stresses 
exhibit a non-linear dependence on the acting forces the coupled criterion cannot be solved 
analytically. The more general approach of solving the optimization problem with the two variables  
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a) b) 
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Figure 4. Effect of the geometrical parameters on the failure load of the joint 

 
 =0.3 and a =0.4. The strength and the fracture toughness are: 45MPa, .45N/mmc c   . 
In Fig. 4a the effect of the overlap length L  on the failure load is shown. It can be seen, that the 
failure load increases with higher overlap lengths. As it is well known from experiments a less 
pronounced increase of the failure load is observed for larger overlap lengths. The basic mechanism 
is the increased bondline area with more equally distributed stresses. But as the peak stresses at the 
end of the overlap do not become arbitrarily smaller with larger overlap lengths, the increase is less 
pronounced for higher overlap lengths. The effect of the adherend height on the failure load is 
shown in Fig. 4b. An increase of the failure loads is observed with higher adherend heights as it is 
for larger overlap lengths. The basic mechanism behind this effect is the improved bending stiffness 
of the adherends. As the bending stiffness increases the peel stresses are distributed more equally. 
Fig. 4c shows the dependence of the failure load on the adhesive layer thickness. A decrease of the 
bearable loads is predicted for thicker adhesive layers. This is in very good accordance with 
knowledge on adhesive joints obtained from practice and experimental results. But it is likewise 
contrary to failure load predictions from failure models that base on strength of material approaches 
[6]. The key point is the consideration of energetic criteria. The adhesive layer stores, due its 
relatively low stiffness, the main part of the elastic strain energy. Hence, it gives the largest 
contribution to the energy release rate. If now the adhesive layer is increased, the incremental 
energy release rate increases as well. In this model both criteria, the stress criterion and the energy 
criterion must be fulfilled simultaneously and hence an increased energy release rate leads to 
reduced failure loads. This work shows that it is possible to explain the effect of adhesive layer 
thickness on the failure load by means of a simple linear elastic analysis by consideration of the 
energy release. 
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Table 1. Material properties of the adhesives 

 
aE   [MPa]  a   [‐] c   [MPa]     [N/mm]  Ref. 

AV138/HV998  4890 0.35 39.5 0.38 [2] 

Hysol EA 9321  3870 0.36 46.0 0.45 [7] 

Redux 326  4440 0.35 50.9 (0.3) [6] 

 
4.2. Comparison to experimental results 
Several experimental studies have been selected for comparison to the failure load predictions. The 
experimental studies where chosen such that only well documented and repeated studies are used. 
Only adhesives with substantially brittle behavior were used for the comparison.  
The effect of the adhesive layer thickness was studied experimentally by Castagnetti et al. [3] for 
steel adherends with two different adhesives. The results of the sufficiently brittle adhesive Hysol 
EA 9514 are used for comparison. In the work by da Silva et al. from 2004 [4] the effect of the 
overlap length on the failure load of the steel joints with a bismaleimide adhesive Redux 326 was 
studied.  In the study by da Silva et al. from 2006 [7] three different adhesives were tested with 
steel adherends. From these adhesives two adhesives, AV138 and Hysol EA 9321, were sufficiently 
brittle. The material data that were used are summarized in Table 1. The strength and the fracture 
toughness are not identified by means of the used experimental results. Material parameters from 
standard tests that are given in literature [2,6,7] are used. No specific value for the fracture 
toughness could be found in literature for the bismaleimide adhesive Redux 326. It is assumed that 
the fracture toughness attains values around 0.3 N/mm.  
The comparisons of the present failure model to the experimental results are shown in Fig. 5a-5c. 
Obviously, the failure load predictions agree well with the experimental results. Especially when the 
scattering of the experimental results is considered it becomes clear that the failure load prediction 
by the present model is of good quality. Another important feature is that the effects of the 
geometrical parameters are covered correctly by the present model. Especially the adhesive layer 
thickness effect has been subject to many studies that try to explain the effect on the failure load. If 
only stress criteria are used it appears that the strength of the adhesive reduces if thinner bondlines 
are considered. No physically sound explanation can be given for such a change of the adhesive 
strength. The present model can correctly predict the effect of the adhesive layer thickness by an 
additional energetic condition that must be satisfied simultaneously. 
 
5. Summary 
 
A new failure model for adhesive joints has been given. It bases on a coupled stress and energy 
criterion in the framework of FFM. A closed-form analytical model for the mechanical behavior of a 
single lap joint is used to set up the failure model. The failure model requires two basic failure 
parameters, the strength and the fracture toughness of the adhesive. A study of the effect of the 
geometrical parameters on the failure load on adhesive joints is shown and discussed. The predicted 
effects are in good accordance to general knowledge on adhesive joints. Furthermore a comparison 
to experimental results is shown. In general it shows a good accordance of the prediction and the 
experimental results. All trends are covered very well. Only failure parameters as given in published 
results from standard tests are used in the comparison and no fitting of the input parameters needs to 
be performed. A remarkable outcome is the fact that the effect of the adhesive layer thickness is 
covered correctly. 
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a) b) 

c) 

Figure 5. Comparison to experimental results 
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