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Abstract  Concrete is a so called quasi-brittle material which, despite predominantly elastic material 
response, exhibits in tension loading a stable non-linear fracture response, when tested under displacement 
control. The reason for the non-linearity is the development of a fracture process zone, in front of the crack, 
due to micro-cracking and crack bridging. It has become increasingly popular to model the fracture process 
zone with different cohesive zone models. However, their use requires sophisticated finite element modeling 
and their success is directly related to the correctness of the assumed stress relaxation in the fracture process 
zone. An alternative is to use LEFM combined with an effective crack length. The effect of the fracture 
process zone is to make the specimen sense the crack as being longer than a0+Δa. The fracture process zone 
causes thus an effective increase in the crack driving force but also the apparent fracture resistance increases 
since the fracture process zone effectively “blunts” the crack tip. This simple method, that does not require 
any finite element modeling, can be used as an aid to select the proper cohesive zone model for more 
sophisticated modeling. 
 
Keywords  Concrete fracture, size effect, fracture toughness, quasi-brittle materials, K-R. 
 
1. Introduction 
 
Concrete is a so called quasi-brittle material which, despite predominantly elastic material response, 
exhibits in tension loading a stable non-linear fracture response, when tested under displacement 
control (Fig. 1 [1]). The reason for the non-linearity is the development of a fracture process zone, 
in front of the crack, due to micro-cracking and crack bridging. An excellent review of the physical 
fracture process of concrete has been given in e.g. [2] and need not be covered here in any more 
detail. Here, the focus is on the fracture mechanical description of the effect of the fracture process 
zone on the structural behavior of the test specimen and prediction of size effects. 
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Figure 1. Example of a typical load-displacement relationship for concrete in a SE(B) fracture toughness test 
[1]. 
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The cracking of concrete is schematically presented in Fig. 2. The shaded area in Fig. 2, relates to 
the micro-cracked material. The part of the micro-cracked material, lying in front of the 
macroscopic crack (including initial crack length a0 and extended crack Δa), constitutes the active 
fracture process zone. In this region the material cohesion is weakened due to the micro-cracking. 
The effect of the fracture process zone is to make the specimen sense the crack as being longer than 
a0+Δa. The fracture process zone causes thus an effective increase in the crack driving force. The 
effect of the fracture process zone is similar in nature to the Irwin plasticity correction [3] for 
metals. 
 

 
 

Figure 2. Schematic presentation of the fracture process of concrete. The initial crack length is a0 and the 
macroscopic extended crack is Δa. PZ is the size of the active fracture process zone. 

 
The part of the micro-cracked material that becomes engulfed in the crack wake, is no longer 
actively affecting the crack driving force, but it has absorbed energy related to the micro-crack 
surfaces. This has the effect of increasing the materials effective fracture resistance (Fig. 3).  
 

 
 

Figure 3. Schematic definition of the difference between an ideally brittle and a quasi-brittle material. 
 
Often, fracture toughness tests of concrete are actually assessed by estimating an effective stress 
intensity factor and effective crack length [4], to derive an effective K-R curve in line with the 
ASTM E561 – 10 test standard [5]. This procedure is, however, not widely used, partly due to the 
question regarding the significance of the effective crack length and effective crack driving force. 
Another method called the double-K or double-G criterion is based on the estimate of the stress 
intensity at the onset of first crack extension (with a non-developed fracture process zone) and the 
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stress intensity corresponding to maximum load in the test [4]. This method is really an 
improvement of the classical tests where the maximum load has been combined with the initial 
crack length (a0) to obtain a nominal fracture toughness value. The challenge with the double-K 
criterion lies in the reliable detection of the moment of crack initiation, which is almost invisible on 
the load-displacement record. Also, the estimation of the crack length at maximum load contains an 
experimental challenge and the necessity to combine both estimates of the crack tip displacement 
and load displacement. This prevents the method from becoming a simple quality assurance type of 
fracture toughness estimate. 
 
As a compromise to the use of the classical nominal load maximum stress intensity factor, a special 
size effect expression has been proposed by Bažant. (See e.g. [6]). The Bažant size effect expression 
is versatile and has been shown to describe well the size effect in load maximum values of concrete 
and other quasi-brittle materials. The Bažant size effect expression for load maximum (Pmax) can be 
expressed in the form of Eq. (1). B and W denote the fracture toughness specimen thickness and 
width and σf corresponds to the tensile stress of the material. The constant c accounts for specimen 
geometry and W0 is a normalizing constant. The constants c and W0 are determined by fitting to test 
results from different size specimens of identical geometry. Apparently the only weakness with the 
size effect expression is that a comparison between different loading geometries is not possible 
without the inclusion of additional fitting parameters [7]. 
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Here, a LEFM based estimate of the effective stress intensity factor and the effective crack growth 
at maximum load in a fracture mechanics test is used to obtain a simple power law approximation 
of the effective K-R curve that is applicable to the description of not only different size specimens, 
but also specimens with varying geometry. 
 
2. Estimate of Maximum Load 
 
In the case of metals, the materials tearing resistance is usually well described with a simple power 
law expression. Assuming, that the evolution of the fracture process zone and its effect on the 
effective materials fracture resistance behaves similarly to metals, also the effective stress intensity 
factor as a function of the effective crack growth should be possible to approximate with a power 
law in the form of Eq. (2). 
 
 1

m
Ieff mm effK K a≈ ⋅Δ , (2) 

 
For metals, when the tearing resistance is expressed in J-integral units, the power m is close to 0.5 
or less. Thus, in K units the power should be in the vicinity of 0.25. If the fracture process zone size 
is very small compared to the crack growth, Δa, the power m will be small. If it is large compared to 
Δa, the power m should be closer to 0.25 or even above. When the relation between crack growth 
and fracture process zone no longer exists, the power m is expected to grow uncontrollable. This is 
not, however, expected to occur until well beyond the maximum load value. 
 
The effective stress intensity factor is related to load and the effective crack length by Eq. (3). 
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Eq. (3) differs from the classically used nominal stress intensity factor, which is calculated using 
only the initial crack size (a0). The nominal stress intensity factor under-predicts the true effective 
crack driving force and should not be used in the assessment of quasi-brittle materials. 
 
Combining Eqs. (2) and (3) leads to a relation between load and effective crack growth, Eq. (4). 
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When the derivative of Eq. (4) (dP/da) is 0, the load and effective crack length correspond to 
maximum load. This leads to the relation between power m and effective crack extension in the 
form of Eq. (5) [8]. 
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Eq. (5) is general and can be applied to any geometry for which the shape function f(a/W) is known. 
A numerical inversion of Eq. (5) is quite simple. One can tabulate a set of a0, m and ΔaeffPmax values 
for a desired geometry and then a specific equation may be fitted to the data, or the information can 
be interpolated from the table. As an example, the solutions for the standard SE(B) and C(T) 
specimens are shown graphically in Figs 4a and b. An approximate solution for the standard SE(B) 
specimen with span width S/W = 4 is given by Eq. (6) and for the standard C(T) specimen with 
H/W = 0.6 is given in Eq. (7). 
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Figure 4. Effective crack growth corresponding to maximum load for standard SE(B) and C(T) specimens 
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It is important to note that Eqs. (6) and (7) are applicable only for standard specimen geometries. 
Especially in the case of the SE(B) specimen often different S/W ratios are used in the tests. For 
such tests, the standard f(a/W) expression can be adjusted e.g. by Eq. (8) [9] to be used together 
with its derivative in Eq. (5). 
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The analysis consists of solving the power m and K1mm iteratively by combining Eqs (4) and (5) to 
provide the correct maximum load values for different size and/or geometry specimens. The result 
is obtained in the form of the effective K-R curve in the form of Eq. (2) which then can be used for 
the evaluation of other geometries. For a constant geometry and fixed initial crack size ratio (a0/W), 
the effective crack growth is directly related to the specimen width (W). 
 
The proposed method relies on the assumption that the effective K-R curve up to maximum load 
can be approximated by a simple power law. Karihaloo and Nallathambi [10] collected a large 
number of SE(B) data and estimated from the experimental load-displacement traces, the relation 
between initial crack length and the effective (based on effective compliance) crack length 
corresponding to maximum load. Their results have been reproduced in Fig. 5.  
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Figure 5. Estimate of effective crack length at maximum load, Eq. (6), compared to Karihaloo and 
Nallathambi experimental data from SE(B) specimens with varying S/W [10]. 
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Included in the figure are theoretical estimates from Eq. (6) for the m values 0.1 and 0.45. It should 
be pointed out that the theoretical estimates are for a fixed span width of S/W = 4, whereas the 
Karihaloo and Nallathambi data contains specimens with varying span widths. A shorter span width 
increases the shear stresses in the specimen, having the effect of increasing the size of the fracture 
process zone. This translates into a larger m value. Overall, the Karihaloo and Nallathambi data 
provides a strong validation of Eq. (6) and the assumption that the effective K-R curve up to 
maximum load can be approximated by a simple power law. 
 
3. Discussion 
 
Fig. 6 compares the maximum load for varying crack length data from three different specimen 
sizes [11] are shown to be well described with a single effective K-R curve. Originally the smallest 
specimen size data was discarded as representing incomparable data due to a too small specimen 
size. Therefore the power law effective K-R curve was only fitted to the two larger specimen sizes. 
However, the use of the effective K-R curve describes well all three specimen sizes. Fig. 6 includes 
also another “small” specimen data set [12] representing the same type of concrete. The points 
denoted as squares with crosses lie very close to the other “small” specimen data (open squares), 
indicating that the fracture toughness of the concretes is similar. 
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Figure 6. The maximum load for three different specimen sizes with strongly varying initial crack lengths are 

all described by a single K-R curve. The data has been taken from [11]. The squares marked by a cross are 
from [12], but their behavior is practically identical to the other specimens. 

 
These examples show the descriptive power of the power law effective K-R curve estimated based 
on the maximum load values. 
 
The effective K-R curve describes well the specimen behavior up to maximum load. This is 
exemplified in Fig. 7, where SE(B) data for limestone is analyzed. Fig. 7a, shows the maximum 
load values for self-similar specimens of different size [13]. Even though limestone differs from 
concrete, the fracture process is sufficiently similar to enable the use of limestone as an example. 
The power law K-R curve was fitted to the maximum load data in Fig. 7a. Then, the K-R curve 
estimate was used to predict the load displacement up to maximum load for the three different 
specimen sizes (Figs 7b, c, d). For the prediction, the crack is first advanced several small steps of 
Δaeff. Next the K-R curve is used to estimate the KIeff and P corresponding to a + Δaeff. Finally the 
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estimated load is used to calculate the displacement corresponding to a + Δaeff, from the theoretical 
compliance. Considering the scatter of individual load-displacement traces, the prediction up to 
maximum load is excellent. Thus, this very simple power law K-R procedure can be used to predict 
the non-linearity in concrete and stone structures up to maximum load. 
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Figure 7. The prediction of load displacment dependence up to maximum load, based on simple effective 
K-R curve fitting to maximum load data. Data taken from [13]. 

 
Beyond maximum load, the connection between the effective crack length and the fracture process 
zone size breaks up. This is highlighted in Fig. 8. The load-displacement data was extracted from 
[1], so that for each specimen size representative upper and lower bound load-displacement traces 
were digitized. The effective crack length was estimated directly from the individual 
load-displacement data pairs, assuming that all the non-linearity is due to effective crack growth. 
Fig. 8a shows the effective crack driving force versus absolute effective crack growth and Fig. 8b 
shows the effective crack driving force versus proportional crack growth. Also included in the plots 
is the effective K-R curve estimated for the maximum load values. It is seen that for crack growth 
up to maximum load and slightly beyond, the effective K-R curve follows the absolute effective 
crack growth, whereas for large crack growths the effective K-R curve follows the proportional 
effective crack growth. This is a direct result of the fracture process zone evolution. Prior to 
maximum load, the fracture process zone is controlled by the fracture mechanical loading 
introduced by the crack. At some point, the connection between process zone size and the effective 
crack length breaks up. Finally, when the facture process zone has fully engulfed the crack and 
possibly extended to the free surface, the fracture process zone size develops as if there was no 
single crack in the structure. 
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Figure 8. Normalization of effective crack driving force versus effective crack growth for self-similar SE(B) 
specimens of different size. Data extracted from [1]. Fig. 8a shows the effective crack driving force versus 

absolute effective crack growth and Fig. 8b shows the effective crack driving force versus proportional crack 
growth. Also included in the plots is the effective K-R curve estimated for the maximum load values. 

 
The power law method contains similarities to an analytical cohesive zone method, which has been 
applied to describe the size effect in SE(B) specimens [14, 15]. The power law method is, however, 
much easier to use and provides an at least as good description of the size effect as can be seen by 
comparing Fig. (6) with Figs (4-6) in [15]. The advantage of the power law procedure lies in the 
very simple quantification of the fracture process zone development. A small power m indicates a 
brittle material, where the fracture process zone remains small throughout the fracture process. This 
is the case for m values of the order of 0.1 and below. The other extreme is a large m value in which 
case the material is crack insensitive and the damage comes mainly from the fracture process zone 
evolution. The method enables also the quantification of constraint in terms of the power m. 
 
The procedure results in the estimate of the effective stress intensity factor corresponding to 1 mm 
effective crack growth. 
 
4. Summary and Conclusions 
 
Concrete is a so called quasi-brittle material which, despite predominantly elastic material response, 
exhibits in tension loading a stable non-linear fracture response, when tested under displacement 
control. The reason for the non-linearity is the development of a fracture process zone, in front of 
the crack, due to micro-cracking and crack bridging. The effect of the fracture process zone is to 
make the specimen sense the crack as being longer than a0+Δa. The fracture process zone causes 
thus an effective increase in the crack driving force and apparent fracture resistance. The fracture 
modeling of concrete has been considered a mature theory. However, Present state of the art testing 
and assessment methods are somewhat cumbersome to use. Here, a LEFM based estimate of the 
effective stress intensity factor and the effective crack growth at maximum load in a fracture 
mechanics test is used to obtain a simple power law approximation of the effective K-R curve. It is 
shown that it is applicable to the description of not only different size specimens, but also 
specimens with varying geometry. The method is based on a new theoretical estimate of the 
effective crack growth corresponding to maximum load. 
 
It can be concluded that: 
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• The presented procedure results in a simple two parameter description of the effective fracture 
resistance of quasibrittle materials. 

• The procedure describes the effect of initial crack length on the maximum load values. 
• The procedure enables the construction of the load-displacement dependence up to maximum 

load. 
• The procedure enables a simple classification of the materials fracture process zone evolution.  
• The procedure can be used in the context of the so called double-K criterion to describe the 

effective initiation toughness value. 
• The procedure can be used to examine constraint effects on the materials fracture process zone 

evolution. 
• In the future, the procedure may be used to assist damage mechanics type modeling of the failure 

of quasi-brittle materials. 
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