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Abstract  In particulate materials under compression at the peak load the accumulated damage allows 
particle rolling. For non-spherical particles the moment equilibrium dictates that further increase in 
displacement requires reduced shear stress producing an effect of apparent negative stiffness; its value 
depends upon the magnitude of the compressive stress. Dilatancy produced by rolling particles reduces the 
value negative stiffness, while the contraction phase causes immediate instability. Material with rolling 
particles is macroscopically modelled as a matrix containing inclusions with negative shear modulus. When 
the concentration of negative stiffness inclusions is low, the effective shear modulus is positive and the 
material is stable. When the concentration reaches a critical level the effective shear modulus abruptly 
becomes negative and the material loses stability. Furthermore, there exists a special value of negative shear 
modulus of inclusions (and hence the magnitude of compressive stress) when the critical concentration 
becomes zero, such that the first rolling particle induces the global instability.  
 
Keywords  Rolling particles, Negative shear modulus, Effective shear modulus, Critical concentration, 
Dilation 
 
1. Introduction 

The importance of particle rotations (and the associated rotational degrees of freedom) in the 
mechanisms of instability and failure of particulate materials has long been recognised (e.g. [1-7]). 
The particle rotations were observed in physical experiments (e.g. [8-10]) and discrete element 
simulations (e.g. [11-14]). The modelling of the effect of particle rotation was mainly based on the 
concept of spherical (circular in 2D) particles, which offered the maximum simplicity. The effect of 
particle shape was thought to be quantitative, for instance resulting in reduced velocities of particle 
flow and increased stresses (e.g. [15]). However, the non-spherical particles can interlock – a 
phenomenon that does not exist in spherical particles [16]. Furthermore, rotations of non-spherical 
particles cause elbowing [17] that is coupling between the rotations and normal stresses. Both these 
mechanisms could lead to qualitatively new phenomena, such as the apparent negative stiffness 
[18-23]. It was further pointed out in [24] that in producing the negative stiffness effect the role of 
non-spherical particles could be played by clusters of connected spherical particles. The role of 
non-spherical particles and clusters of spherical particles is also discussed in [25].   
 
Dyskin and Pasternak [20-24] modelled the apparent negative stiffness associated with particle 
rotations without taking into account the effect elbowing has on dilation/contraction. Here we 
include the latter into consideration. This will be accomplished in Section 2. Section 3 models the 
volume elements with apparent negative stiffness as inclusions in a matrix with positive definite 
elastic moduli and takes into account the interaction between the inclusions. This result gives an 
insight into the effect of rotating particles on global stability.  
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2. Apparent negative stiffness caused by rotating particles. The effect of 
elbowing 

Consider a particulate material loaded in compression to near the peak load. We assume that in the 
process of loading considerable amount of defects have been accumulated, mainly on the bonds 
(cement) between the particles such that some particles are now partially detached from the matrix, 
Fig. 1. The balance of moments of shear and normal forces shown in Fig. 1 about point O reads 
 
   T sinϕ + Pcosϕ = 0, π 2 ≤ϕ ≤ π . (1) 
 
Here l is the corresponding particle diameter, T and P are the magnitudes of the shear and normal 
forces and angle ϕ is related to the position of the particle at the moment of detachment. Obviously, 
the moment equilibrium is only possible for the range of angles ϕ indicated in (1) and in Fig. 1a; 
when ϕ<π/2, Fig. 1b, the particle becomes unstable. It is reasonable to assume that the initial 
packing of particles was a stable one similar to the configuration shown in Fig. 1a. The analysis 
below is based in infinitesimal deformations and hence all movements considered will leave the 
initially stable configuration in its stable state. For that reason we will disregard the unstable 
configurations shown in Fig. 1b. 
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Figure 1. A moment balance of rotating (rolling) partially detached particle: (a) stable 
configuration, (b) unstable configuration. 

 
Suppose the particle underwent an infinitesimal rotation dϕ. This will change the coordinates (x, y) 
of point A, Fig. 1 by dx=-lsinϕ dϕ and dy=lcosϕ dϕ. The moment equilibrium (1) imposes the 
following force increments:  
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dT sinϕ −T cosϕ

sinϕ
dx
l
+ dPcosϕ −T sinϕ

cosϕ
dy
l
= 0 . (2) 

 
We now assume that the change dP in the magnitude of compression is proportional to the vertical 
displacement such that  
 

 
 
dP = km

dy
l

. (3) 

 
where km is the stiffness of the surrounding parts of the particulate material. Hereafter we refer to 
the surrounding parts of the particular material as the matrix.  
 
Substituting (3) into (2), expressing T via P through the equation of moment equilibrium (1) and 
taking into account that dy=-dx cosϕ/sinϕ we obtain 
 

 
  
dT = −P 1

sin3ϕ
+ km

cos2ϕ
sin2ϕ

#
$
%

&
'
(

dx
l

. (4) 

 
It is seen that the coefficient between incremental shear force dT and incremental shear strain dx/l 
can assume negative values, when P>kmsinϕ cos2ϕ. We call this effect the apparent negative 
stiffness. 
 
Following [20-23] we model the collective effect of rotating particles by treating them as negative 
stiffness inclusions (inclusions with negative shear modulus, µincl) embedded in a matrix with 
positive definite elastic moduli. We then use the theory of effective characteristics in order to 
determine the elastic moduli of such a composite at macroscale and determine the conditions of 
global instability. In order to incorporate this phenomenon into a continuum description of the 
granulate material consider a representative volume element, that is an element of size H>>l. We 
introduce normal p and shear τ stresses acting on the faces of the element. Therefore we can treat 
normal and shear forces from (4) as P~pl2 and T~τl2. For the sake of simplicity we will treat the 
normalised matrix stiffness as the bulk modulus of the matrix, κm~km/l2. Then we can express the 
average shear modulus, µincl, associated with the particle rotation as 
 

 
  
µincl = −

p
sin3ϕ

+κm
cos2ϕ
sin2ϕ

. (5) 

 
Here angle ϕ is interpreted as an average angle, which provides a combined description of particle 
shapes and initial packing.  
 
The negative stiffness is achieved when  
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   p > pmin (ϕ ) =κm sinϕ cos2ϕ . (6) 
 
Dependence (6) and its interpretation are shown in Fig. 2. It is seen that the dense packing produces 
negative stiffness at lower pressures that the loose one.  
 
Two interim conclusions could be made here. Firstly, the compressive stress required to produce the 
effect of apparent negative stiffness could be of the order of the bulk modulus of the surrounding 
rock. That is only possible when the bulk modulus is sufficiently reduced by the damage 
accumulated in the preceding loading, namely near the peak load. Another conclusion is that the 
phenomenon of apparent negative stiffness depends upon the density of the initial packing. 
 
 

pmin/κm 

 

Figure 2. Dependence (6) and its interpretation: the smallest values of the minimal compressive 
stress magnitude pmin needed to ensure the negative stiffness are achieved at dense packing (angles 

close to π /2 and π), while the loose packing (angles close to 3π /4) requires higher compressive 
stresses to show negative stiffness. 

 
 
 
3. Effect of rotating particles on global stability 

The presence of negative stiffness means the loss of positive definiteness of the tensor of elastic 
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moduli (or the quadratic form of elastic energy) and hence the loss of uniqueness of the elastic 
solution. The material with negative stiffness becomes intrinsically unstable; its actual stability or 
instability depends upon the boundary conditions, i.e. the type of loading applied. The best known 
example of this type of dependence upon the boundary conditions is the post-peak loading of rock 
or concrete sample which is only possible if the loading device is sufficiently stiff and the loading is 
displacement controlled.  
 
In the case under consideration the negative stiffness associated with particle rotation/rolling is a 
local phenomenon. We model it as a negative stiffness (negative shear modulus) inclusion in a 
conventional matrix. The stability/instability of the inclusion should depend upon the deformability 
of the matrix. This suggests that the global stability of the material with rotating particles could be 
determined by considering the matrix filled with negative stiffness inclusions and determining the 
effective moduli of such a composite. If the tensor of effective moduli is positive definite, the 
particulate material is stable, otherwise it is unstable. 
 
The theory of effective characteristics of a matrix with negative stiffness inclusions was developed 
in [23, 26]. Following [23] we model the negative stiffness inclusions as spherical inclusions with 
negative shear modulus given by (5) and the (positive) bulk modulus, κincl, equal to that of the 
matrix, κincl = κm. The shear modulus of the matrix, µm is assumed to be positive. 
 
The simplest case usually considered in the theory of effective characteristics is the case of low 
concentrations (volumetric fractions) of inclusions. In this case the interaction between the 
inclusions can be neglected and the problem of determination of the effective moduli is reduced to 
the determination of the change in the average strain (volumetric averaging over representative 
volume element is presumed) caused by a single inclusion under uniform stress. This is so-called 
approximation of low concentrations. It was shown in [27] and then in [23, 26] that the application 
of the approximation of low concentrations to the matrix with negative stiffness inclusions leads to 
a singularity, which in our case happens at a certain critical value of the negative shear modulus. 
The singularity means that the influence of the inclusions on the effective moduli is infinite at any 
concentrations. The existence of the singularity can be interpreted as the increasing influence of 
interaction between the inclusions as the shear modulus of inclusion tends to that (negative) value. 
Therefore one has to use the methods of computing effective moduli that account for the interaction.  
 
We use the differential self-consistent method, which in the case of isotropic matrix with spherical 
inclusions of any concentrations c leads to the following system of differential equations obtained 
in [28]: 
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where c is the volumetric fraction (concentration) of inclusions. 
 
In our case, κincl = κm and therefore κeff = κm is an obvious solution of the first equation in (7). Due 
to the uniqueness of the solution of this system of differential equations, there are no other 
solutions.  
 
We now normalise the moduli with κm by formally assuming that κm =1. After introducing the 
notations  
 

 
  
µeff = µ, µincl = −mµm , m =

p
sin3ϕ

−
cos2ϕ
sin2ϕ

. (8) 

 
system (7) is reduced to 
 

 

  

dµ
dc

=
−5µ
1− c

⋅
(4µ +3)(mµm +µ)

8µ 2 −3(4mµm −3)µ −6mµm

µ
c=0
= µm

#

$
%

&
%

. (9) 

 
Derivative dµ/dc is discontinuous when the denominator in the right hand site of (9) vanishes. The 
discontinuities correspond to points µ1 and µ2:  
 

 
  
µ1,2 =

3
16

(4mµm −3) 3± 48µm
2m2 −8mµm +27"

#$
%
&' . (10) 

 
It can be shown that µ2<0<µ1. Since the initial condition in (9) is µ(0)=µm>0, the solution of (9) can 
only reach point µ1, after which the effective shear modulus drops to a certain negative value 
determined by the global loading device which applies the load to the particulate material [23, 26]. 
We therefore treat the modulus µ1 as a point of global intrinsic instability of the particulate material. 
 
Solution of (9) can be obtained in the following implicit form 
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µ +mµm( )5

µ 2 4µ +3( )
= µm

3 1+m( )5
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1− c( )5

. (11) 

 
The point of instability is reached when µ=µ1. This happens at the concentration of negative 
stiffness inclusions 
 

 
  
ccr =1−

µ1+mµm

1+m
4µm +3

µm
3µ1
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"
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$
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1 5

. (12) 

 
The dependencies (11) and (12) are shown in Figs. 3 and 4 respectively for different values of m 
and µm. It is seen from Fig. 3 that the effective shear modulus can both increase and decrease with 
concentration of the negative stiffness inclusions depending upon the values of parameters m and 
µm. The plot of critical concentration, Fig. 4a, shows that there exist combinations of parameters m 
and µm at which the critical concentration is zero. That means that at the instance when the particle 
rotations start and make the corresponding shear modulus negative, the particulate material loses 
stability. Dependence of the value of negative shear modulus of inclusions vs. the shear modulus of 
the matrix is shown in Fig 4b. It is seen that the dependence is relatively weak; the value of the 
negative shear modulus that delivers zero critical concentration is of the order of the shear modulus 
of the matrix. 
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Figure 3. Effective shear modulus µ vs. volumetric fraction (concentration) of negative stiffness 
inclusions c. Three pairs of parameters m and µm on the left side of the picture refer to nearly 

indistinguishable dependencies in the same order from top to bottom. 
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Figure 4. The critical concentration of negative stiffness inclusions ccr: (a) its dependence upon the 
value m of negative shear modulus of inclusions; (b) the values mcr of negative shear modulus of 

inclusions delivering zero critical concentration. 

 
From here it is seen that the magnitude of compressive stress that produces the global instability of 
the particulate material is 
 

   pcr κm = mc sin3ϕ + sinϕ cos2ϕ . (13) 
 
 
4. Conclusions and outlook 

The ability of partially detached non-spherical particles to roll or rotate leads to the effect of 
apparent negative stiffness (negative shear modulus), whose value depends on the magnitude of the 
applied compressive stress. This is a property of particle non-sphericity: rotation of spherical (or 
circular in 2D) particles does not produce negative stiffness. Rotation of non-spherical particles also 
produces elbowing which results in dilation of the surrounding material. Depending of the initial 
packing, dilation can lead to the reduction of the value of negative shear modulus such that the 
magnitude of compressive stress needed to effect negative stiffness is of the order of the bulk 
modulus. Therefore the effect of negative stiffness is only relevant to the particulate materials 
loaded in compression up to the peak when the damage created in the course of loading has 
considerably weakened the material and made the moduli sufficiently low. 
 
The global instability of the particulate material with rolling or rotating particles is reached when 
the effective shear modulus is no longer positive. This happens when the concentration (volumetric 
fraction) of negative stiffness areas reaches a certain critical value that depends upon the value of 
negative shear modulus and the shear modulus of the surrounding material. There exist a 
combination of these parameters which makes the critical concentration zero, meaning that the first 
rolling particle results in global instability. 
 
The theory proposed casts light on the mechanics of compressive failure of particular materials such 
as rock and concrete as well as on the mechanism instability of granular materials. Another possible 
application of this theory is in the design of a special class of hybrid materials based on specially 
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shaped particles or blocks to ensure the desirable properties of the hybrid not achievable otherwise. 
In particular, according to Fig. 3 the presence of rotating non-spherical particles in a matrix can 
either increase or decrease the effective shear modulus depending upon the magnitude of applied 
compressive stress. This suggests a method of designing materials whose moduli can be controlled 
by applied load without the creation of additional internal damage. 
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