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Abstract: A meshless method based on the local Petrov-Galerkin approach is proposed to solve 
initial-boundary value crack problems in decagonal quasicrystals. These quasicrystals belong to the class of 
two-dimensional quasicrystals, where the atomic arrangement is quasiperiodic in a plane, and periodic in the 
perpendicular direction. The ten-fold symmetries occur in these quasicrystals. The two-dimensional (2-d) 
crack problem is represented by a coupling of phonon and phason displacements. Both stationary governing 
equations and dynamic equations represented by the Bak model with oscillations for phason are analyzed 
here. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for 
simplicity. The spatial variation of the phonon and phason displacements is approximated by the Moving 
Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains a system of ordinary 
differential equations for certain nodal unknowns. That system is solved numerically by the Houbolt 
finite-difference scheme as a time-stepping method.  
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1. Introduction 
 
Qusicrystals discovered in 1984 combine aperiodic long-range positional order with 
noncrystallographic rotational symmetry [1]. Decagonal quasicrystals (QC) belong to the class of 
two-dimensional quasicrystals, where the atomic arrangement is quasiperiodic in a plane, and 
periodic in the third direction. The problem can be decomposed into plane and anti-plane elasticity. 
Here, we consider only the plane elasticity, because the anti-plane elasticity is a classical one.  
Experimental observations [2] have shown that quasicrystals are brittle. Therefore, to understand 
the effect of cracks on the mechanical behaviour of a quasicrystal, the crack analysis of 
quasicrystals, including the determination of the stress intensity factors, the elastic field, the strain 
energy release rate and so on, is a prerequisite. Many crack investigations in the QC are focused on 
Griffith cracks in an infinite body, where analytical solutions are available for one and 
two-dimensional quasicrystals [3-6]. Elastodynamics of quasicrystals brings some additional 
problems. A unique opinion on governing equations for the phason field is missing. According to 
Bak [7] the phason describes particular structure disorders in qusicrystals, and it can be formulated 
in a six-dimensional space. Since there are six continuous symmetries, there exist six hydrodynamic 
vibration modes. Then, phonons and phasons play similar roles in the dynamics and both fields 
should be described by similar governing equations, namely the balance of momentum. Lubensky 
and his students [8] were thinking that the phason field should be described by a diffusion equation 
with very a large diffusion time. According to them, phasons are insensitive to spatial translations 
and phason modes represent the relative motion of the constituent density waves. Rochal and 
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Lorman [9] suggested the minimal model of the phonon-phason dynamics in quasicrystals to 
reconcile contradictions between Bak´s and Lubensky´s arguments. In literature, analyses of 
dynamic crack problems are very seldom [10-12].  
The purpose of this paper is to develop a reliable computational method for a general crack problem 
in quasicrystals with a finite size. Up to date we have practically only analytical solutions for simple 
boundary value problems of elasticity for quasicrystals. However, there are some limitations to 
apply analytical approaches for complicated boundary value problems. The finite difference method 
has been applied to elasto-hydrodynamics problems by Fan [12]. The basic equations for the finite 
element formulation can be found in the Fan`s book too. Meshless methods for solving PDE in 
physics and engineering sciences are a powerful new alternative to the traditional mesh-based 
techniques. Focusing only on nodes or points instead of elements used in the conventional FEM, 
meshless approaches have certain advantages. The meshless local Petrov-Galerkin (MLPG) method 
is a fundamental base for the derivation of many meshless formulations, since trial and test 
functions can be chosen from different functional spaces. The MLPG method with a Heaviside step 
function as the test functions has been successfully applied to multi-field coupled and crack 
problems [13,14]. 
In the present paper, the MLPG is applied to crack analysis in decagonal quasicrystals under static 
and transient dynamic loads. The MLPG formulation is developed for the Bak`s model. The 
coupled governing partial differential equations are satisfied in a weak-form on small fictitious 
subdomains. Nodal points are introduced and spread on the analyzed domain and each node is 
surrounded by a small circle for simplicity, but without loss of generality. The spatial variations of 
the phonon and phason displacements are approximated by the Moving Least-Squares (MLS) 
scheme. After performing the spatial MLS approximation, a system of ordinary differential 
equations for certain nodal unknowns is obtained. Then, the system of the ordinary differential 
equations of the second order resulting from the equations of motion is solved by the Houbolt 
finite-difference scheme [15] as a time-stepping method.  

 
2. Local integral equations 
 
Two displacement fields named phonon and phason displacements are used for the deformation 
theory of quasicrystals [12]. The generalized Hooke`s law for plane elasticity of decagonal QC is 
given as 

11 11 11 12 22 11 22( )c c R w wσ ε ε= + + + ,   22 12 11 22 22 11 22( )c c R w wσ ε ε= + − + , 

12 21 66 12 21 122 ( )c R w wσ σ ε= = + − , 

11 1 11 2 22 11 22( )H K w K w R ε ε= + + − ,   22 1 22 2 11 11 22( )H K w K w R ε ε= + + −  , 

 12 1 12 2 21 122H K w K w Rε= − − ,   21 1 21 2 12 122H K w K w Rε= − +  , (1) 

where ijε and ijσ  correspond to the phonon strain and stress tensor, and ijw and ijH  denote the 
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phason strain and stress tensor, respectively. Symbols ijc , R and iK denote phonon elastic 

constants, phonon-phason coupling parameter and phason elastic constants, respectively. The 
phonon and phason strains are defined as 

 ( ), ,
1( )
2ij i j j iu uε = +x , (2) 

 ,( ) ( )ij i jw w=x x , (3) 

where ( )iu x and ( )iw x are the phonon and phason displacements, respectively. The phonon field 

describes the mechanical displacements of the crystal system, and the phason field represents the 
atom arrangement along the quasiperiodic direction. The phonon strains are the same as in classical 
elasticity and they are symmetric. However, the phason strains are new physical quantities used 
only in quasi-crystal elasticity and they are asymmetric. 
According to Bak`s model [7] the phason structure disorders are realized by fluctuations in 
quasicrystals. The balance of momentum is valid for phonon deformation and similarly for phason 
oscillations too. Then, the model is described by following governing equations: 

 , ( , ) ( , ) ( , )ij j i iX uσ τ τ ρ τ+ =x x x&& , (4) 

 , ( , ) ( , ) ( , )ij j i iH g wτ τ ρ τ+ =x x x&& , (5) 

where iu&&, iw&& , ρ , iX  and ig  denote the acceleration of the phonon and phason displacements, 

the mass density, and the body force vectors, respectively. Both governing equations have 
mathematically a similar structure. 

The MLPG method constructs a weak-form over the local fictitious subdomains such as sΩ , which 

is a small region taken for each node inside the global domain [16]. The local subdomains could be 
of any geometrical shape and size. In the present paper, the local subdomains are taken to be of a 
circular shape for simplicity. The local weak-form of the governing equations (4) and (5) can be 
written as 
 *

, ( , ) ( , ) ( , ) ( ) 0
s

ij j i i iku X u dσ τ ρ τ τ
Ω

⎡ ⎤− + Ω =⎣ ⎦∫ x x x x&& , (6) 

  *
, ( , ) ( , ) ( , ) ( ) 0

s

ij j i i ikH w g u dτ ρ τ τ
Ω

⎡ ⎤− + Ω =⎣ ⎦∫ x x x x&& , (7) 

where * ( )iku x is a test function. Applying the Gauss divergence theorem to the first domain 

integrals in both equations one gets 
 [ ]* * *

,( , ) ( ) ( ) ( , ) ( ) ( , ) ( , ) ( ) 0
s s s

ij j ik ij ik j i i ikt n u d t u d u t X t u dσ σ ρ
∂Ω Ω Ω

Γ − Ω+ − + Ω =∫ ∫ ∫x x x x x x x x&& , (8) 

 [ ]* * *
,( , ) ( ) ( ) ( , ) ( ) ( , ) ( , ) ( ) 0

s s s

ij j ik ij ik j i i ikH t n u d H t u d w t g t u dρ
∂Ω Ω Ω

Γ − Ω+ − + Ω =∫ ∫ ∫x x x x x x x x&& , (9) 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-4- 
 

where s∂Ω  is the boundary of the local subdomain which consists of three parts 

s s st suL∂Ω = ∪Γ ∪Γ  [16]. Here, sL  is the local boundary that is totally inside the global domain, 

stΓ  is the part of the local boundary which coincides with the global traction boundary, i.e., 

st s tΓ = ∂Ω ∩Γ , and similarly suΓ  is the part of the local boundary that coincides with the global 

displacement boundary, i.e., su s uΓ = ∂Ω ∩Γ . 

By choosing a Heaviside step function as the test function * ( )iku x  in each subdomain the local 

weak-forms (6) and (7) are converted into the following local integral equations  

 ( , ) ( , ) ( , ) ( , )
s su s st s

i i i i
L

t d u d t d X dτ ρ τ τ τ
+Γ Ω Γ Ω

Γ − Ω = − Γ − Ω∫ ∫ ∫ ∫x x x x%&& , (10) 

 ( , ) ( , ) ( , ) ( , )
s su s st s

i i i i
L

h d w d h d g dτ ρ τ τ τ
+Γ Ω Γ Ω

Γ − Ω = − Γ − Ω∫ ∫ ∫ ∫x x x x%&& . (11) 

The expressions for the traction and the generalized traction vectors result from the constitutive 
equations and are given as 

 , ,( , ) ( ) ( , ) ( ) ( , ) ( )i ijkl k l ijkl k l jt c u R w nτ τ τ⎡ ⎤= +⎣ ⎦x x x x x x , (12) 

 , ,( , ) ( ) ( , ) ( ) ( , ) ( )i ijkl k l ijkl k l jh K w R u nτ τ τ⎡ ⎤= +⎣ ⎦x x x x x x , (13) 

where ( )jn x  is the unit outward normal vector to the boundary s∂Ω . 

The trial functions are chosen to be the MLS approximations by using a number of nodes spreading 
over the domain of influence. The approximated functions for the phonon and phason displacements 
can be written as [16] 

 
1

垐( , ) ( ) ( ) ( )
n

h T a a

a
τ φ τ

=

= ⋅ =∑u x Φ x u x u , (14) 

 
1

ˆ( , ) ( ) ( )
n

h a a

a
τ φ τ

=

=∑w x x w , (15) 

where the nodal values ( )1 2垐 �( ) ( ), ( )
Ta a au uτ τ τ=u  and ( )1 2垐 �( ) ( ), ( )

Ta a aw wτ τ τ=w  are fictitious 

parameters for the phonon and phason displacements, respectively, and ( )aφ x  is the shape 

function associated with the node a. The number of nodes n used for the approximation is 

determined by the weight function ( )am x . A 4th order spline-type weight function [16] is applied in 

the present work. 
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Then, the traction vector ( , )it τx  at a boundary point s∈∂Ωx  is approximated in terms of the 

same nodal values ˆ ( )a τu  and ˆ ( )a τw  as 

 
1 1

垐( , ) ( ) ( ) ( ) ( ) ( ) ( )
n n

h a a a a
w

a a
τ τ τ

= =

= +∑ ∑t x N x C B x u N x R B x w , (16) 

where N(x) is related to the normal vector n(x) on s∂Ω  and the matrices aB  and a
wB  are 

represented by the gradients of the shape functions with 

1 2

2 1

0
( )

0
n n

n n
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

N x ,    
,1

,2

,2 ,1

0
( ) 0

a

a a

a a

φ
φ

φ φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

B x ,       
,1

,2

,2 ,1

0
( ) 0

a

a a
w

a a

φ
φ

φ φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

B x , 

and the material matrices 

11 12

12 22

66

0
0

0 0

c c
c c

c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C   ,      
0
0

0 0

R R
R R

R

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

R   . 

Similarly the generalized traction vector ( , )ih τx  can be approximated by 

 
1 1

垐( , ) ( ) ( ) ( ) ( ) ( ) ( )
n n

h a a a a
h h h hw

a a

τ τ τ
= =

= +∑ ∑h x N x R B x u N x K B x w , (17) 

where  

1 2

2 1

0 0
( )

0 0h

n n
n n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

N x ,      

1 2

2 1

1 2

2 1

0 0
0 0

0 0
0 0

K K
K K

K K
K K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎢ ⎥⎣ ⎦

K , 

,1

,2

,2

,1

0
0

( )
0

0

a

a
a
hw a

a

φ
φ

φ
φ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B x ,     

0
0

0 0
0 0

h

R R
R R

R
R

R

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

. 

Satisfying the essential boundary conditions and making use of the approximation formulae (14) 
and (15) one obtains the discretized form of these boundary conditions as 

 
1

ˆ( ) ( ) ( , )
n

a a

a

φ τ τ
=

=∑ ζ u u ζ% , (18) 

 
1

( ) ( ) ( , )
n

a a

a

φ τ τ
=

=∑ ζ w w ζ% ,   for u∈Γζ . (19) 
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Furthermore, in view of the MLS-approximations (16) and (17) for the unknown quantities in the 
local integral equations (10) and (11), we obtain their discretized forms as 

1

垐( ) ( ) ( ) ( ) ( )
s st s

n
a a a a

a L

d dτ ρ φ τ
= +Γ Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥Γ − Ω +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∫ ∫N x CB x u x u&&  

 
1

ˆ( ) ( ) ( ) ( , ) ( , )
s st st s

n
a a
w

a L

d d dτ τ τ
= +Γ Γ Ω

⎛ ⎞
+ Γ = − Γ − Ω⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∫ ∫ ∫N x RB x w t x X x% , (20) 

 

1 1

垐( ) ( ) ( ) ( ) ( ) ( )
s st s st

n n
a a a a

h h h hw
a aL L

d dτ τ
= =+Γ +Γ

⎛ ⎞ ⎛ ⎞
Γ − Γ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑∫ ∫N x R B x u N x KB x w  

 
1

ˆ( ) ( ) ( , ) ( , )
s st s

n
a a

a

d d dρ φ τ τ τ
= Ω Γ Ω

⎛ ⎞
− Ω = − Γ + Ω⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∫ ∫ ∫x w h x g x&& % , (21) 

which are considered on the sub-domains adjacent to the interior nodes as well as to the boundary 

nodes on stΓ .  

Collecting the discretized local integral equations together with the discretized boundary conditions 
for the phonon and phason displacements results in a complete system of ordinary differential 
equations which can be rearranged in such a way that all known quantities are on the r.h.s. Thus, in 
matrix form the system becomes 

 + =Ax Cx Y&& . (22) 
There are many time integration procedures for the solution of this system of ordinary differential 
equations. In the present work, the Houbolt method is applied [15].  

 
3. Computation of stress intensity factors 
 

It can be proved that both phonon and phason stresses exhibit the same singularity 1/ 2r− , where r is 

the radial coordinate with origin at the crack-tip [17]. Neglecting higher-order infinitesimal terms in 
the analytical solution, one can obtain the asymptotic expression of stresses at the crack-tip vicinity 

proportional to 1/ 2r− . For the mode-I crack under a pure phonon load we have the following 

asymptotic stresses in polar coordinate system [11]: 
||

11
1 1 3( , ) cos 1 sin sin
2 2 22

IKr
r

σ θ θ θ θ
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 

||

22
1 1 3( , ) cos 1 sin sin
2 2 22

IKr
r

σ θ θ θ θ
π

⎛ ⎞= +⎜ ⎟
⎝ ⎠

, 
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||

12 21
1 3( , ) ( , ) cos cos
2 22

IKr r
r

σ θ σ θ θ θ
π

= = , (23) 

 
||

21
11

3 3 5( , ) sin 2sin sin cos
2 2 22

Id KH r
r

θ θ θ θ θ
π

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

, 

||
221

22
3 5( , ) sin cos
2 22

Id KH r
r

θ θ θ
π

= , 

||
221

12
3 5( , ) sin sin
2 22

Id KH r
r

θ θ θ
π

= − , 

 
||

21
21

3 3 5( , ) sin 2cos sin sin
2 2 22

Id KH r
r

θ θ θ θ θ
π

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, (24) 

 
where 

( )
( )

1 2
21 2

14
R K K

d
MK R

−
=

−
, 

 220
lim 2 ( ,0)I r

K r rπ σ
→

=P , (25) 

and 11 12( ) / 2M c c= − .       

4. Numerical examples 

In the first example a straight central crack in a finite quasicrystal strip under a pure phonon load is 
analyzed (Fig. 1). The strip is subjected to a stationary or impact mechanical load with Heaviside 

time variation and the intensity 0 1Paσ =  on the top side of the strip. The material coefficients of 

the strip correspond to Al-Ni-Co quasicrystal and they are given by  

 10 2
11 2 23.43 10c L M Nm−= + = ⋅ ,  10 2

12 5.74 10c L Nm−= = ⋅ ,     10 2
1 12.2 10K Nm−= ⋅ , 

 10 2
2 2.4 10K Nm−= ⋅ , 34180 /kg mρ = ,  19 34.8 10 /w m s kg−Γ = ⋅  . 

The crack-length 2 1.0a m= , strip width ratio / 0.4a w = , and strip-height 1.2h w=  are considered. 
Due to the symmetry of the problem with respect to the crack-line as well as vertical central line, 
only a quarter of the specimen is numerically analyzed. Both phonon and phason displacements in 
the quarter of the specimen are approximated by using 930 (31x30) nodes equidistantly distributed.  
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Figure 1. Central crack in a finite homogeneous strip 

Numerical results for the phonon displacement 2u  along the crack-face for various coupling 

parameter R are given in Fig. 2. For a vanishing coupling parameter R/M = 0, we obtain phonon 
displacements corresponding to conventional elasticity. One can observe a good agreement between 
the FEM and present MLPG results. The FEM results have been obtained by the COMSOL code 
with 576 quadrilateral elements. One can observe that the phonon crack-opening-displacements 
increase with increasing value of the coupling parameter. The stress intensity factor (SIF) is 
computed by using equation (25) and the extrapolation technique from stresses ahead of the 

crack-tip with finite distances. The normalized SIF 0/IK aσ πP  is increasing from 1.139 at 

R/M=0 to 1.323 at R/M=0.5.  

 
Figure 2. Variations of the phonon crack displacement with the normalized coordinate 1 / 2x a   
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In the next example, we analyze the same cracked strip under an impact load with Heaviside time 

variation 0 ( 0)H tσ − . The normalized SIF is compared with the FEM results in Fig. 3 for 

R/M=0.5 . The time variable is normalized as /Lc hτ , where 11 /Lc c ρ=  is the velocity of 

longitudinal wave. One can observe again a good agreement of the FEM and MLPG results. Only 
some differences appear at larger time instants.  

 

Figure 3. Temporal variation of the normalized SIF for the central crack in a strip under an impact load  
 

 
Acknowledgements 

The authors gratefully acknowledge the supports by the Slovak Science and Technology Assistance 
Agency registered under number APVV-0014-10, the Slovak Grant Agency VEGA-2/0011/13, and 
the German Research Foundation (DFG, Project-No. ZH 15/23-1).   

 
References 

[1] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic phase with long-range orientational 
order and no translational symmetry. Phys Rev Lett, 53 (1984) 1951–1953. 

[2] C.Z. Hu, W.Z. Yang, R.H. Wang, Symmetry and physical properties of quasicrystals. Advanced 
Physics 17 (1997) 345-376. 

[3] T.Y. Fan, Y.W. Mai, Elasticity theory, fracture mechanics and some relevant thermal properties 
of quasicrystal materials. Applied Mechanics Review 57 (2004) 325-344. 

[4] W.M. Zhou, T.Y. Fan, Plane elasticity problem of two-dimensional octagonal quasicrystal and 
crack problem. Chinese Physics 10 (2001) 743-747. 

[5] Y.C. Guo, T.Y. Fan, A mode-II Griffith crack in decagonal quasicrystals. Appl Math Mechanics 
22 (2001) 1311-1317. 

[6] L.H. Li, T.Y. Fan, Complex variable function method for solving Griffith crack in an icosahedral 
quasicrystal. Science in China G51 (2008) 773-780. 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-10- 
 

[7] P. Bak, Phenomenological theory of icosahedral incommensurate (quasiperiodic) order in Mn-Al 
alloys. Phys Rev Lett 54 (1985) 1517-1519. 

[8] T.C. Lubensky, S. Ramaswamy, J. Joner, Hydrodynamics of icosahedral quasicrystals. Phys Rev 
B 32 (1985) 7444-7452. 

[9] S.B. Rochal, V.L. Lorman, Minimal model of the phonon-phason dynamics on icosahedral 
quasicrystals and its application for the problem of internal friction in the Ni-AlPdMn alloys. 
Phys Rev B 66 (2002) 144204. 

[10] A.Y. Zhu, T.Y. Fan, Dynamic crack propagation in a decagonal Al-Ni-Co quasicrystal. J Phys: 
Condens Matter 20 (2008) 295217. 

[11] T.Y. Fan, Z.Y. Tang, W.Q. Chen, Theory of linear, nonlinear and dynamic fracture for 
quasicrystals. Engn Fracture Mech 82 (2012) 185-194. 

[12] T.Y. Fan, Mathematical Theory of Elasticity of Quasicrystals and its Applications, Springer, 
Beijing, 2011. 

[13] J. Sladek, V. Sladek, Ch. Zhang, M. Wünsche, Crack analysis in piezoelectric solids with 
energetically consistent boundary conditions by the MLPG. CMES-Computer Modelling in 
Engineering & Sciences 68 (2010) 185-220. 

[14] J. Sladek, V. Sladek, S. Krahulec, E. Pan, Enhancement of the magnetoelectric coefficient in 
functionally graded multiferroic composites. J Intell Mat Syst Struct 23 (2012) 1644-1653. 

[15] J.C. Houbolt, A recurrence matrix solution for the dynamic response of elastic aircraft. Journal 
of Aeronautical Sciences 17 (1950) 371-376. 

[16] S.N. Atluri, The Meshless Method, (MLPG) for Domain & BIE Discretizations, Tech Science 
Press, Encino, 2004. 

[17] X.F. Li, T.Y. Fan, Y.F. Sun, A decagonal quasicrystal with a Griffith crack. Philosophical 
Magazine A 79 (1999) 1943-1952. 

 


