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Abstract  A singular stress field exists in an elastic substrate around the contact edge with a rigid 
flat-tipped indenter. This surface-contact-induced singular stress field can also be described by the stress 
intensity factor concept, if the indentation stress intensity factor Kind is introduced for indentation cracking 
analysis. The Kind–controlled singular stress field is almost identical to that of the Mode-I tensile singular 
stress field around the crack tip, except the negative sign due to the compressive nature of surface contact 
loading.  

This study presents an energy-based fracture mechanics analysis for the indentation stress intensity factor 
(ISIF) Kind and the indentation-induced boundary cracking within the Kind-dominant region around the 
contact edge. It is found that the critical indentation stress intensity factor exists, and the relation between the 
indentation fracture toughness KIC-ind and the common Mode-I fracture toughness KIC is established 
analytically, showing KIC-ind = 2.5KIC. The indentation-cracking angle at the contact edge is also determined.  

The fracture mechanics model on surface contact cracking induced by a flat-tipped indenter provides a 
useful alternative for measuring the fracture toughness KIC, which can be useful for characterization of 
surface fracture properties of bulk elastic bodies and coating fracture properties of layered structures such as 
MEMS. 
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1. Introduction 
 
Frictional sliding induced surface damage in the form of micro-crack initiation can be the precursor 
for potentially much severe structural damage. Fracture mechanics modeling concerning this 
important structural integrity issue has been an interesting topic for years [1-3]. It is noted from the 
work [1,2,4,5] that a mixed-mode singular stress field exists in an incompressible substrate at the 
sliding contact edge of a rigid flat-ended indenter pressing down onto the substrate. This study will 
examine closely the process of micro-crack initiation on the contact surface, which is controlled by 
the singular stress field at the sharp corner of the flat-ended indenter, and the cracking angle. 
 
The familiar singular stress fields are those associated with sharp cracks in elastic solids, through 
which the Mode-I fracture toughness KIC at the critical loads can be determined from the common 
stress intensity factors. Although the singular stress field in an incompressible substrate at the 
sliding contact edge of a rigid flat-ended indenter is not due to the presence of a sharp crack tip, this 
contact-induced singular stress field does share some similar features with those of a crack-induced 
singular stress field, which implies the well-known concepts of linear elastic and elastic-plastic 
fracture mechanics such as the stress intensity factor K and the J-integral [6-11] can be adopted for 
modeling of the crack initiation from a crack-free surface under frictional sliding wear.  
 
The significance of fracture mechanics modeling of contact crack initiation can be seen from 
fretting fatigue and other engineering applications such as rock fracture mechanisms in rock cutting. 
This study will present a new methodology based on the aforementioned singular stress field 
generated at the sliding contact edge of a rigid flat-ended indenter, which will connect the contact 
mechanics together with the fracture mechanics by using energy-based modeling.  
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2. The energy release rate for boundary cracking 
 
This section describes the method we used to derive the strain energy release rate associated with 
sliding contact crack initiation from the crack-free boundary. The energy release rate related to a 
boundary movement has been investigated by Eshelby [6], Sih [7], Budiansky and Rice [8,9]. 
Consider a three-dimensional (3D) elastostatic boundary problem with material contained within 
the surface boundary S+s (Fig. 1), where the portion s of the boundary is traction-free, and the 
external loading is imposed only on S. Without changing the boundary conditions on S, impose a 
continuously varying sequence of static solutions, related to the displacements u, given by a 
time-like parameter t. Details of the procedure can be consulted in references [9], and here, only the 
result of energy release rate per unit time, ∂Π/∂t, is given, i.e. 

,                                  (1) 

where  denotes the ‘velocity’ of the points on s and  is the current outward normal to s. In 
the case of two-dimensional deformation fields as shown in Fig. 2, relevant to the present problem, 
the energy release rate remains of the same form as Eq. (1).  

 
Figure 1.  Two-dimensional deformation fields and integration path. 

 
Let , which corresponds to two components of unit boundary movement, so that 

, , where  is the angle between boundary movement  and x1. Let  
be the unit tensor inward normal to boundary s, which means that the boundary s moves inward, 
and let all points on boundary s move in the same direction. Thus, the energy release rate for the 
boundary movement is given by 

,                       (2) 

 
	  

Figure 2.  Boundary movement or cracking as the notch-like boundary becomes a crack. 
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and from the conservation law, , proposed by Eshelby [6] 
 ( )∫∫ −==

ins
jiij

s
jj dsuTwndswnJ , ,                            (3) 

where sin is any integration path within the area closed by boundary S+s, and sin+s form a closed 
integral loop.  
 
From the geometrical point of view, boundary crack initiation, regardless whether it occurs at a 
crack tip, a notch corner or on a general crack-free boundary, can always be defined as a boundary 
movement in some direction, with the limit  taken and the notch-like boundary becomes a 
crack, as shown in Fig. 2 and Fig. 3. Then, the energy release rate of boundary cracking can be 
defined as  

 ,                           (4) 
where  denotes the driving force of boundary cracking in direction x1 when the limit taken 
exists, or the energy release rate with unit boundary movement s in direction x1;  denotes 
the driving force in direction x2, or the energy release rate with unit boundary movement s in 
direction x2. 
 
For a homogenous and isotropic substrate Griffith’s criterion [9] states that the crack will extend 
when the critical value  is reached [10,11] 

 .                                   (5) 
For a standard cracked specimen subjected to Mode I loading,  and  can be calibrated 
as 

𝐺! = 𝐽!" = 𝐾!"! 1− 𝜇! /𝐸,                             (6) 
where KIC is the Mode-I fracture toughness.  
	  

3. Asymptotic stress field in sliding contact 
 
3.1. Boundary Condition 
 
A typical fretting contact problem of a rigid flat-ended indenter with half width a, sliding on a 
homogeneous, isotropic, elastic body in half plane is shown in Fig. 3. The Cartesian coordinates (x1, 
x2), and the polar coordinates (r, θ), both with the origin at the left edge of the indenter, are selected. 
Normal force P and tangential force Q act on the indenter and the following normal and shear 
tractions along interface have been solved in closed form [4], 
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and 
 ( ) ( )11 xfpxq = ,                                  (8) 

where f is the coefficient of friction; λ is determined by 
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and µ is Poisson’s ratio of the substrate. 
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Figure 3.  Indentation configuration, integral path  and . 
 
Eq. (7) shows that the stress state near the indenter corner may vary in the form 
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For special cases either with 50.=µ  or 0=f , Eq. (9) leads to 5.0=λ , showing the same order of 
stress singularity as that for a sharp crack tip.  
 
For 50.=µ , the substrate becomes incompressible. The asymptotic stress boundary conditions of 
the substrate in the contact area next to the left and right corners then become 
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for the two cases of 50.=µ  and 0=f . 
 
3.2. Singular stress fields due to the normal and tangential loads 
 
The singular stress field at the sharp edge of the contact between a rigid flat-ended indenter and 
substrate is known from the asymptotic contact analyses of and Nadai [4]. Using the polar 
coordinates (r, θ), Fig. 3, the stresses at the left corner can be found as follows due to the normal 
load: 
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This expression indicates that the stress state for indentation is a “negative” Mode I singular stress 
field for cracked solids, where 

 
a
PK indI
π

=− ,                                     (14) 

which defines actually an indentation stress intensity factor. The familiar Mode-I singular stress 
field is obtained by removing the negative sign and changing KI-ind into KI. Only difference between 
tensile mode-I stress field and indentation stress field is sign “-” in their equations.  
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Nadai [4] gave also the asymptotic stress field due to the tangential load as  
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where 

 
a
fPfKK indIindII
π

== −− .                                  (16) 

Actually, Eq. (15) is identical to the classical Mode II singular stress fields when KII-ind = KII. 
 
3.3. Characters of the stress fields 
 
It is clear from the above discussion that the asymptotic stress field, , induced by the 
sliding contact is a typical mixed-mode I-II singular stress field for incompressible substrates and 
friction free. This singular stress field is responsible for surface crack initiation on the crack-free 
surface of the substrate at the contact edge. This finding is significant as it shows that singularity 
and distribution of the stress field induced by surface contact of a flat-ended indenter are identical to 
those of a mixed-mode crack. As a result, the concepts of stress intensity factor and fracture 
toughness can now be introduced unambiguously into contact mechanics and associated contact 
damage. Therefore, Eqs. (14-17) represent an important advance by defining the indentation stress 
intensity factors, and , and the Kind-dominant region at the contact edge. In other words, 
the fracture mechanics theory, such as the Griffith’s criterion, is applicable in the case of the 
boundary fracture induced by the sliding contact.  
	  

4. Calculation methods on indentation stress intensity factor 
 
4.1. Application of J1-integral in the indentation fracture 
 
For a closed integration path abcdefas  as shown in Fig.4, following J1-integral can be gotten. 

 ( ) 0111 =−= ∫
abcdefas

ii dsuTwnJ , .                                 (17) 

If the path abcdefas  is divided into afedebcdababcdefa sssss +++= , because of 01 =n  on surface of the 
substrate, 0=iT  on the abs , 01 =T  and 012 =,u  on the des , we have 

 ( ) 0111 =−= ∫
abs

ii dsuTwnJ ,                                   (18) 

and 
 ( ) 0111 =−= ∫

des
ii dsuTwnJ , .                                  (19) 

Then substituting Eqs. (18) and (19) into Eq. (17), it follows that 
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It can then be rearranged to give 
 ( ) ( )∫∫ −=−=

bcdafe s
ii

s
ii dsuTwndsuTwnJ 11111 ,, ,                             (21) 

which means that along any two paths, afes  and bcds , starting from the any point on the left free 
boundary to any one on the contact boundary, the J1-integrals are identical. It shows theoretically 
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that this integral is path independent.  
 
If the integration path afes  is half of a circle and within the Kind-dominant region, it is not difficult 
to get 
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2
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Then, Eq. (21) becomes  
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This equation is a key formula to construct a method to calculate the ISIFs induced by the 
indentation. Additionally, this method can be applied to the contact problems with the finite and 
infinite boundaries.  

 

Figure 4.  Integration path for Mode-I indentation. 

4.2. Application of J1-integral in the indentation fracture for layered substrate 

For the layered substrate, two closed integration paths as shown in Fig. 5 will be considered in 
present work. One is the pant nedcbammn sss +=1  and the other mnnfm sss ʹ′ʹ′ʹ′ʹ′ +=2 . Additionally, as 01 =n , 

iT  and 1,iu  are continuous on the paths mns  and mns ʹ′ʹ′ , from conservation law, we have the 
following contour integrals. 
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According to Eqs. (18), (19), (24)-(26), it can be found that  
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which indicates that the integral is path independent for composite substrate similar to the Eq. (21). 
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If the integration path bcds  is half circle and within the Kind-dominant region, the following 
equation can be found. 

 ( )∫ −=
−
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Figure 5.  Integration path for the layered substrate for Mode-I indentation. 

 

Figure 6.  Boundary cracking for Mode-I indentation. 

5. Boundary cracking in Mode-I indentation 
 

In section 2, an expression describing the strain energy release rate of boundary cracking has been 
derived. It will be used to discuss the boundary cracking in the case of the complete sliding contact 
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in this section. 
 
Let obss =  in Eq. (3) as shown in Fig. 6 adjacent to the right corner of the indenter and s  be 
within the Kind-dominant region. Because 0=iT  and 01 =n  on the integration path obs , the 
energy-based driving force for boundary cracking in x1 and x2 directions in this case can be found in 
[12-16]  

 ( ) 0lim 1001 ∫ ==
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s

ss dswnJ .                             (29) 
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From Eqs. (4), (29) and (30), the total energy release rate of boundary cracking induced by the 
sliding contact at any angle α  can be found as 
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Setting 0=
αd
dG , i.e., 0cos =cα , we have 

 
2
π

α =c ，                                   (32) 

where cα  is the critical cracking angles, which is vertical to the contact boundary.  
 
Cracking occurs when G  reaches its critical or maximum value. The critical or maximum 
energy-based driving force for boundary cracking can then be solved from Eq. (31), i.e. 

 ( )
E
KG indI
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µ
2

1 22
−−

=max .                                (33) 

From the Eqs. (5), and (33), the critical condition of substrate boundary cracking beneath the 
contact surface can be found as 

 ( )
E
KGG indIC

C π
µ
2

1 22
−−

==max .                             (34) 

for Mode-I indentation, where the indICK −  is the boundary fracture toughness for Mode-I 
indentation. Then, K-based fracture criterion for Mode-I indentation can be given by 

 indICindI KK −− =                                          (35) 

From Eqs. (34) and (6), it can be determined that  
 ICindIC FKK =− ,                                  (36) 

where F is an enlarging factor, and is given by 
 506622 .== πF .                                 (37) 

Therefore, Eq. (36) indicates that the common fracture toughness for a Mode-I tensile crack can 
also be determined by the indentation test method presented in this study. Recently, this indentation 
method has been successfully used to determine the fracture toughness of glass [16] and brittle 
polymers [17]. 
	  
6. Conclusions 
 
A fracture-based modelling for boundary cracking induced by indentation singular stress field has 
been investigated by using energy-based method. The concept of indentation stress intensity factor 
is introduced to descript the intensification of the indentation singular stress field. Typical 
calculation method on ISIFs has been given by using the partial J-integral. This study presents also 
an energy-based fracture mechanics analysis for the ISIF and the indentation-induced boundary 
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cracking within the KI-ind-dominant region around the contact edge. It is found that the critical 
indentation stress intensity factor exists, and the relation between the indentation fracture toughness 
KIC-ind and the common Mode-I fracture toughness KIC is established analytically, showing KIC-ind = 
2.5KIC. The indentation-cracking angle at the contact edge is also determined. The present fracture 
mechanics model on surface contact cracking induced by a flat-tipped indenter provides a useful 
alternative for measuring the fracture toughness KIC, which can be useful for characterization of 
surface fracture properties of bulk elastic bodies and coating fracture properties of layered 
structures. 
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