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Abstract  When an half-space elastic substrate is subject to indentation with rigid, flat-ended and periodic 
indenters, a periodic singular stress fields and K-dominant regions should arise adjacent to the indenter edges. 
The concept of indentation stress intensity factor Kind is introduced to describe the singular indentation stress 
field, which mathematically is very similar to that of a mode I crack. The singular indentation stress field is 
sufficient to induce cracking from a smooth crack-free surface, which can potentially play a significant role 
in damage analysis of rock cutting. In the present article, a fracture-based model is proposed for rock 
breakage by using an energy-based method. The indentation stress intensity factor Kind and indentation 
cracking equation for rock cutting model have been formulized. 
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1. Introduction 
 
A rock-cutting tool schematically illustrated in Fig.1 can be modeled by periodic rigid and 
flat-tipped indenters. It is noted from the work [1-4] that a mixed-mode singular stress field exists in 
an incompressible substrate at the sliding contact edge of a rigid flat-ended indenter pressing down 
onto the substrate. Subsequently, the damage in a form of the micro-crack initiation on the contact 
surface will be induced by such a singular stress field, which can contribute substantially to rock 
cutting. In the present work, a fracture-based method similar to the classical fracture mechanics is 
proposed to formularize the cracking or indentation damage induced by the singular indentation 
stress field next to the corners of the periodic indenters. 
 
2. Periodic indentation configurations  
 
The modeling of rock cutting problem to be investigated is illustrated in Fig.1. The periodic 
indenters is pressed on to the surface of half plane substrate, which occupies the region 

+∞<<< hx20 , +∞<<−∞ 1x  and is constrained to deform in plane strain normal to the 21 xx −  
plane. The substrate is supposed to be elastically isotropic, with Young’s modulus E and Poisson’s 
ratio μ . The periodic arrayed indenters is supposed to be rigid, with contact width 2l and 
center-to-center contact spacing 2t. The calculations for indentation stress intensity factors are 
carried out based on one of the periodic Cell 1 and Cell 2 that lies between 22 1 txt <<− . Two 
limiting cases of friction are considered: (i) perfect smooth sliding between the indenter and the 
substrate; and (ii) small frictional sliding contact between the indenter and the substrate. 
 
3. Asymptotic stress field in sliding contact 
 
3.1. Boundary Condition 
 
A typical fretting contact problem of a rigid flat-ended indenter with half width a, sliding on a 
homogeneous, isotropic, elastic body in half plane is shown in Fig.2. The Cartesian coordinates (x1, 
x2), and the polar coordinates (r, θ), both with the origin at the left edge of the indenter, are selected. 
Normal force N and tangential force Q act on the indenter and the following normal and shear 
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tractions along interface have been solved in closed form [4], 
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( )
( ) 10

21

12
<<

−
−

= λ
μ
μλπ ,tan

f
.                                (3) 

 
 

Fig.1 The two-dimensional indentation model for rock cutting with n periodic indentaters. 
 

 
 

Fig.2. Indentation configuration, integral path 0→s  and 0→Δ . 
 

Eq.(1) shows that the stress state near the indenter corner may vary in the form 
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For special cases either with 50.=μ  or 0=f , Eq.(3) leads to 50.=λ , showing the same order of 
stress singularity as that for a sharp crack tip.  
 
For 50.=μ , the substrate becomes incompressible. The asymptotic stress boundary conditions of 
the substrate in the contact area next to the left and right corners then become 
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for the two cases of 50.=μ  and 0=f . 
 
3.2. Singular stress fields due to the normal and tangential loads 

 
The singular stress field at the sharp edge of the contact between a rigid flat-ended indenter and 
substrate is known from the asymptotic contact analyses of and Nadai [4]. Using the polar 
coordinates (r, θ), Fig.2, the stresses at the left corner can be found as follows due to the normal 
load: 
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This expression indicates that the stress state for indentation is a “negative” Mode-I singular stress 
field for cracked solids, where 

a
NK indI
π

=− ,                                 (8) 

which defines actually an indentation stress intensity factor. The familiar Mode-I singular stress 
field is obtained by removing the negative sign and changing KI-ind into KI for cracked solids with 
mode-I loads. Only difference between tensile mode-I stress field and indentation stress field is sign 
“-” in their equations.  
 
Nadai [4] gave also the asymptotic stress field due to the tangential load as  
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where 
indIindII fKK −− = .                               (10) 

Actually, the Eq.(9) is identical to the classical Mode-II singular stress fields when KII-ind = KII. 
 
3.3 Characters of the stress fields 
 
It is clear from the above discussion that the asymptotic stress field, II

ij
I
ijij σσσ += , induced by the 

sliding contact is a typical mixed-Mode I-II singular stress field for incompressible substrates and 
friction free. This singular stress field is responsible for surface crack initiation on the crack-free 
surface of the substrate at the contact edge. This finding is significant as it shows that singularity 
and distribution of the stress field induced by surface contact of a flat-ended indenter are identical to 
those of a mixed-mode crack. As a result, the concepts of stress intensity factor and fracture 
toughness can now be introduced unambiguously into contact mechanics and associated contact 
damage. Therefore, Eqs.(7)-(10) represent an important advance by defining the indentation stress 
intensity factors, indIK − and indIIK − , and the Kind-dominant region at the contact edge. In other words, 
the fracture mechanics theory, such as the Griffith’s criterion, is applicable in the case of the 
boundary fracture induced by the sliding contact. It should be pointed out that for finite boundary 
contact problems, Eqs.(7), (9) and (10) are still effective, for which case the indIK −  should be 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-4- 

solved by the concerned method.  
 
4. Conservation integral 
 
Based on the two-dimensional conservation law, for a closed integration path without any crack and 
cavity in it, the following integrals will vanish [5-8]. 

( )∫ −=
s

jiijj dsuTwnJ , .                              (11) 

Eq.(11) has two components, 1J  and 2J . 1J  is so-called J-integral. They can all be used to 
calculate the stress intensity factors for the cracked elastic bodies. In the following section some key 
steps to estimate the SIF for the indentation have been developed based on the 2J -integral. 
 
5. Stress intensity factors for periodic indentations  
 
As the definition of the half plane substrate, i.e., +∞<<< hx20 , +∞<<−∞ 1x , any plane 

.... , ,  , 2101 == kktx is the symmetrical plane. Then, the Cell 1 shown in Fig.1 is considered for the 
calculation of the stress intensity factors for periodic indentations. Note that there are two singular 
stress fields next to the two corners of every indenter for all cells. 
 
Select a closed integration path aabcdefghijs  as shown in Fig.3 for Cell 1. From the Eq.(11), following 
result can be given[5-8]. 

( ) 0222 =−= ∫
aabcdefghijs

ii dsuTwnJ , .                                           (12) 

For the paths bcs  and des , because the symmetry, 02 =T , 02 =n and 021 =,u , and the following 
result can be found. 
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Let the ghs  and ijs  be straight lines; and fgs  and jas a quarter of a circle. If the ijas  and fghs  
are within the K-dominant regions, we have [11-13] 
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When the cross sectional area where the cds  located is relatively far from the contact zone, the 
following expression can be given by 

( ) −− +=−= ∫ 22222 ,,
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ii ,                            (16) 

where the iu~  shows the displacement of neutral axis. This displacement can be given by 
elementary strength theory of materials [11-13]. w  is the strain energy density per unit length of 
the cell. For the his , we have 

( ) ( )++ +−=−= ∫ 22222 ,,
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ii .                          (17) 

Then, substituting Eqs.(13)-(17) to Eq.(12), it gives  
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which can be interpreted as the energy release per unit moving of boundary iabs  and efhs  in 
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x2-direction or the crack mouth widening energy release rate for cracked solids [11-13]. The axial 
strain +−

2222 ,,
~  ,~ uu  have been found[11-13] 
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Because the free action of the substrate surface and abs  and efs  is out of the K-dominant regions, 
the integral in left-hand side of Eq. (18) is a small quantity, which can be neglected. Substituting 
Eqs.(19) and (20) into Eq.(18), it will yield 
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where the normalized stress intensity factor can be found as 
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Eq.(22) varying with perimeter l/t is given in Fig.4. 
 

    
Fig.3. Contours of integration for the Cell 1 and Cell 2. 

 

 
Fig.4. the scheme of the normalized stress intensity factor.  
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6. An indirect technique on the periodic indentation 
 
In above sections, a simple and direct method is proposed to estimate the indentation stress intensity 
factor for singular stress field induced by indentation. In this section, an alternative and indirect 
technique is considered. 
 

 
(a)                                (b) 

Fig.5. Periodic indentation and related periodic crack model. (a) Periodic indentation; (b) Related 
crack model. 

 
For any Mode-I indentation, the related crack model can be found[9]. For various crack 
configurations, the stress intensity factors had been found and collected in the handbooks such as 
[14]. Hence, a simple and indirect technique of the crack analogue may be used to solve the 
indentation stress intensity factor for the Mode-I indentation based on the existing literature for the 
crack analysis. As a main research object in present work, i.e., periodic indentation, the related 
crack model can be given in Fig.5(b). For such a periodic array of collinear cracks, the exact 
solution of the stress intensity factor can be found [14]. 
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It varying with the normalized indenter width l/t can be found in Fig.4. 
 

7. Boundary cracking in complete sliding contact 
 
7.1 Energy release rate for boundary cracking 
 
From the geometrical point of view, boundary crack initiation can always be defined as a boundary 
movement in some direction, with the limit 0→s  taken and the notch-like boundary becomes a 
crack, as shown in Fig.2. Then, the energy release rate of boundary cracking can be defined 
as[10-13]  

( ) ( ) αα sin|cos| 0201 →→ += ss JJG ,                         (24) 
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The integration path sin in Eqs.(25) and (26) is any integration path within the substrate, and sin+s 
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form a closed integral loop. The ( ) 01 →sJ |  denotes the driving force of boundary cracking in 
direction x1 when the limit taken exists, or the energy release rate with unit boundary movement s in 
direction x1; ( ) 02 →sJ |  denotes the driving force in direction x2, or the energy release rate with unit 
boundary movement s in direction x2. 
 
For a homogenous and isotropic substrate Griffith’s criterion [15] states that the crack will extend 
when the critical value maxG  is reached [15,16] 

cGG =max .                                  (27) 
For a standard cracked specimen subjected to Mode-I loading, 1JG =max  and cG  can be calibrated 
as 

( ) EKJG ICICc /22 1 μ−== ,                           (28) 
where KIC is the Mode-I fracture toughness. However, in the present case of surface crack initiation, 
a mixed-mode condition is expected as the singular stress field is generated by the sliding contact 
with the rigid flat-ended indenter. 
 
7.2 Critical cracking angle and critical load. 
 
Firstly, ( ) 01 →obsJ  can be found. Let obss =  in Eq.(25) as shown in Figs.2 and 6 adjacent to the right 
corner of the indenter and s  be within the Kind-dominant region. Because 0=iT  and 01 =n  on 
the integration path obs , the energy-based driving force for boundary cracking in x1 direction in this 
case can be found as  

( ) 0lim ∫ ==
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s
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0
01 .                          (29) 

 

Fig.6. Integration path adjacent to punch corner within the Kind-dominant region for 2J . 

Next step is to calculate 02 →obsJ | . As shown in Figs.2 and 6, let obss = , 1
odcbin Ss =  in Eq.(26) and 

take the limit 0→obs , 0→R/δ and 0→R , which means that the 1
odcbin Ss =  is within the 

Kind-dominant region and 01 →odcbS . Then, the energy-based driving force for boundary cracking in 
x2 direction becomes [10,16] 
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in which indII KK −−=  and indIIII KK −=  for indentation singular stress fields. From Eqs.(30) and 
(31), it can be readily obtained that  
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From Eqs.(24), (29) and (32), the total energy release rate of boundary cracking induced by the 
sliding contact at any angle α  can be found as 
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Setting 0=
αd

dG , i.e., 0=cαcos , we have 

2
πα =c ，                                   (34) 

where cα  is the critical cracking angles, which is vertical to the contact boundary. 
 
Cracking occurs when G  reaches its critical or maximum value. The critical or maximum 
energy-based driving force for boundary cracking can then be solved from Eq. (33), i.e. 
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From the Eqs.(27) and (35), the critical condition of substrate boundary cracking beneath the 
contact surface can be found as 
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Finally, the normalized critical load P can be expressed as  
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for a given indenter size 2l from Eqs.(23), (28) and (36). Fig.7 shows the effect of perimeter l/t on 
the normalized critical loads.  
 

 

Fig.7. The effect of the normalized indenter width on the normalized critical load. 

8. Conclusions 
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cutting and provides a closed form solution for the energy release rate of mixed-mode boundary 
cracking as determined by the mixed mode singular stress field induced by the sliding contact. The 
driving forces in the form of Ji-integral for surface crack initiation at the contact boundary, the 
critical energy release rate and the critical load have been analytically determined. The critical 
cracking angles, critical loads have also been derived.  
 
The present study shows that the frictional coefficient between the indenter and substrate uniquely 
characterizes the asymptotic singular stress field, and hence is considered as the primary parameter 
to determine the critical load of the indenter under the condition of slip near the edge of contact. 
The findings in this study may be helpful for establishing the damage mechanisms in the complex 
process of rock cutting by tools with the flat-tipped teeth. 
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