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Abstract  Frictional contact is often observed in the problems with the presence of crack surface. In order 
to take effects of contact of crack surfaces on the structural response, in the framework of mesh-based 
approaches, e.g. Finite Element Method (FEM) or Boundary Element Method (BEM), usually the contact 
surfaces need to be discretized and nodes are placed on the contact surfaces, although the meshes for both 
contact surfaces are not necessary to be matched with each other. However, the crack surface will evolve 
under loading, so remeshing is needed to make the meshes consistent with the geometry of crack surfaces.  
 
In this paper, we deal with the frictional contact problems resulting from presence of crack surfaces by 
combining the eXtended Finite Element Method (XFEM) and B-Differential Equation Method (BDEM). 
XFEM is used to model the discontinuities of displacement fields in the interior of the elements without the 
need for the remeshing of the domain. In BDEM, the normal and tangential contact conditions are 
formulated as B-differentiable equations and satisfied accurately. The B-differentiable Newton solution 
strategy with the good convergence performance is employed to solve with system equations. The Numerical 
examples including 2D and 3D frictional contact problems are given to demonstrate the effectiveness and 
accuracy of the presented approach. 
 
Keywords Frictional contact, eXtended Finite Element Method, B-differential Equation 
 
1. Introduction 
 
Separation, stick and frictional sliding are often observed in the problems with the presence of crack 
surface or crack propagation. In order to take effects of contact on the behavior of cracks and 
structure, in the framework of mesh-based approaches, e.g. traditional Finite Element Method (FEM) 
or Boundary Element Method (BEM), remeshing is needed to trace the crack surfaces and make the 
meshes consistent with the geometry of crack surfaces. Although the meshes for contact surfaces in 
the framework of FEM and BEM are not necessary to be matched with each other, remeshing will 
result in the increase of the computational cost and additional mapping of the computational results 
from the original meshes to updated meshes. The invention of embedded discontinuity method, in 
which the discontinuity surfaces can be embedded in the element and traced effectively without 
remeshing, e.g., eXtended Finite Element Method[1], provides an alternative method to deal with 
contact problem, especially for the case in which contact surfaces evolve in the structure subjected 
to the complicated cyclic loads. The key feature of XFEM is that the discontinuity across crack 
surface can be resolved by additional enrichment functions and additional nodal degrees of 
freedom. 
 
The contact problem which is solved in the content of XFEM is firstly proposed by J. Dolbow Möes 
et al. [2]. The contact condition were enforced by penalty method and the LArge Time INcrement 
method (LATIN) was employed to solve the system equations. Recently, FS. Liu and R.I. Borja [3] 
proposed the Petrov-Galerkin variational formation for the frictional contact problem, and the 
augmented Lagrangian technique was used for the enforcement of contact conditions. I. Nistor et al. 
[4] developed a hybrid X-FEM contact element for frictionless large sliding contact problem, in 
which the augmented Lagrangian method was also employed.  
Due to the good performance and convergence property of B-differentiable Equations method to 
solve the frictional contact problem, so we extended this method to model the two and 
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three-dimensional elastic frictional contact problems between the crack surfaces in the framework 
of XFEM. The structure of the paper is given as follows. Firstly, the variational formulation for 
frictional contact problem and the contact conditions are reviewed in Section 2. Secondly, the 
details of computation of discontinuities across contact surfaces and the equivalent nodal force due 
to the contact force acting at the contact surface are described in the framework of XFEM in 
Section 3. In Section 4, after the B- differentiable equations method for frictional contact problem is 
introduced we give the formulation and solution procedure of the combined XFEM and BDEM for 
frictional contact problem. Two numerical examples are presented in Section 5 for demonstrate the 
feasibility and accuracy of the proposed method. The concluding remarks are given in the last 
section. 
 
2. Problem formulation 
 
2.1. General description of the problem 
 
Consider a body Ω∈Rn, (n=2,3) embedded with two crack surfaces 1

cΓ  and 2
cΓ  which are also 

taken as the contact surfaces. We denote by Γ the outside boundary of Ω. Γ is composed by Γu on 
which prescribed displacements are imposed, Γσ on which prescribed tractions are imposed and the 
crack surfaces, i.e. Γ=Γu∪Γσ∪

1
cΓ ∪ 2

cΓ . The crack surfaces may intersect the boundary Γ with 
points in 2D case or lines in 3D case. In the following sections, the variables with superscripts ‘1’ 
and ‘2’ indicate that they are related to 1

cΓ  and 2
cΓ  respectively. On the two crack surfaces, the 

displacements and tractions are denoted as )2,1(, =itu i
c

i
c  respectively. It should be noted that since 

the contact surfaces are embedded in the element, they are assumed to be coincident initially, i.e., 
no initial gap exists between the contact surfaces. 
 
The quasi-static loading by a body force bf and given traction t on Γσ are assumed. The equilibrium 
equation and boundary conditions are described as follows. 

( ) cf ΓΩ=+ \in0div bσ        (1) 
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Where, σ is the Cauchy stress tensor, u is the prescribed displacement vector on boundary uΓ . nσ  
is the unit normal vector to the boundary σΓ . i

cn and i
ct  (i=1,2) are the unit normal vectors to the 

contact surface i
cΓ  and contact stresses on i

cΓ  respectively. 
 
2.2. Frictional contact constraint formulation by B-differentiable equation 
 
According to the assumption of small displacement and small strain, a contact pair consists of the 
two points with the same coordinates on 1

cΓ  and 2
cΓ , which are denoted as 1

cx  and 2
cx  

respectively. A local coordinate system nab is established on 2
cΓ  as shown in Figure 1. Therein, n 

is the normal vector and a and b are tangential vectors to the contact surface 2
cΓ .  
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Figure 1. Local coordinate system on the contact surface 2
cΓ  

Then the normal gap nuΔ  between a contact pair can be defined as  

( ) ( ) ( )( ) nxuxux ⋅−=Δ 21
cccnu        (3) 

Where, ( )1
cxu  and ( )2

cxu  are the displacements of contact points on 1
cΓ  and 2

cΓ  respectively.  
 
Since part of the system energy will be dissipated due to the friction, the frictional contact problem 
is nonlinear and path-dependent and increment solution strategy is needed. So at every load step, 
when frictional sliding takes place between two contact surfaces, relative incremental sliding in 
tangential directions are defined as follows. 

( ) ( )( ) axduxdu ⋅−=Δ 21
ccadu        (4a) 

( ) ( )( ) bxduxdu ⋅−=Δ 21
ccbdu        (4b) 

Where, du is the vector of incremental displacement at current load step. 
 
The contact conditions in normal and tangential directions proposed by Christensen et al. [5] are 
expressed as a B-differentiable equation set. Due to the assumption of small displacement and small 
strain, the discrete point-to-point contact model is employed in the following, so that the contact 
conditions will be formulated by the quantities at these discrete contact pairs. For i-th contact pair, 
they are written as 

( ) { } 0,min,H2 =Δ= i
n

i
n

ii
c

i PurdPdu        (5a) 

( ) ( ) 0,H3 =−= rPP i
a

i
a

ii
c

i λdPdu        (5b) 

( ) ( ) 0,H4 =−= rPP i
b

i
b

ii
c

i λdPdu        (5c) 

Where, i
cdu  is the incremental displacement vector of two contact points consisting of the i-th 

contact pair. idP  is the vector of increment contact force acting at the i-th contact pair. i
nP , i

aP  
and i

bP  are the total contact forces in the normal and two tangential directions. r is a positive scalar. 
i
nuΔ  is the normal gap. Eq. (5a) corresponds to the normal contact condition, Eqs. (5b) and (5c) 

correspond to the tangential contact conditions in local a and b directions respectively. The 
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definitions of ( )rPi
a , ( )rPi

b  and λ  are given as follows. 
i
a

i
a

i
a durPrP Δ−=)(         (6a) 

i
b

i
b

i
b durPrP Δ−=)(         (6b) 
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Where, i
aduΔ  and i

bduΔ  are tangential incremental relative displacements in local a and b 
directions respectively. The incremental relative displacements in global and local coordinate 
system for i-th contact pair at current load step are defined as 

( )zyxorbanjdududu i
j

i
j

i
j ,,,,,21 =−=Δ      (8) 

The normal relative displacement for i-th contact pair at current load step is defined as 

( )21 i
n

i
n

i
n

i
n duduuu −+Δ=Δ          (9) 

Where, i
nuΔ  is the initial normal relative displacements at current load step. 

 
3. Discretization by XFEM formulation 
 
The XFEM is a promising method to simulate the existence and growth of the discontinuities, such 
as cracks, without the need to make the mesh conforming it. In order to characterize the 
discontinuous displacement field resulted from the embedded discontinuity, the Heaviside functions 
or asymptotic crack tip functions are often used to enrich standard continuous displacement fields of 
the elements cut entirely by the discontinuity surface or those including the crack tip in 2D or crack 
front in 3D case, respectively. The additional nodal degrees of freedom corresponding to these 
enrichment functions are needed. 
 
3.1. The XFEM approximation 
 
In XFEM, the displacement approximation at an arbitrary point x in the element with embeded 
discontinuity takes the form 

[ ][ ] ( ) ( )∑ ∑∑∑
= ===

−+−+=+=
nd

k l
kkllklk

nd

j
jjHj

nd

i
ii rgrgNHHNN

1
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111
),(),()()()()()( θθcxxbuxuxuxu  (10) 

Where, nd is the number of nodes in one element, iu is the continuous displacement field at node i. 
The last two terms form the discontinuous part [ ][ ]u . H(x) is generalized Heaviside function, and 
bHj is the vector of additional translational DOFs corresponding to generalized Heaviside function. 
gl (l=1,2,3,4) are the tip enrichment functions, and ckl is the vector of additional translational DOFs 
related to the l-th tip branch function for node k. The generalized Heaviside function is defined as 
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Where, x* is the closest point on the crack surface for point x. The unit normal vector n is defined in 
Figure 1. The vector functions g(r,θ) are defined as 

( ) ( ) ( ) ( ) ( ) ( ){ }

⎭
⎬
⎫

⎩
⎨
⎧=

==

θθθθθθ
θθθθθ

sin
2

cos,sin
2

sin,
2

cos,
2

sin

,,,,,,,, 4321

rrrr

rgrgrgrgr xgg
           (12) 

Where, (r,θ) are the local polar coordinates of point x. The local polar coordinate system is 
established at the crack tip in 2D case [1] or crack front in 3D case [7]. In (12), the first function 
is discontinuous across the discontinuity surface whereas the other three functions are 
continuous. So the displacement jump across the discontinuity surface comes from the 
generalized Heaviside function (11) and the first function in (12).  
 
The equilibrium equations are obtained after the discretization of weak form of equilibrium 
equations and the implementation of the contact constrain by Lagrangian multiplier method.  

( )PFfKu c+=          (13) 

Where, u is the vector of nodal displacements including the conventional DOFs and additional 
nodal enrichment DOFs. K is the stiffness matrix. f is the nodal load vector resulted from body 
force and prescribed traction on σΓ . Fc is the equivalent nodal force vector resulted from the 
contact forces P acting on the contact surfaces which are equivalent to the contact stress acting on 
the crack surface. Note that the unknown vectors in Eq.(13) are u and P. 
 
3.2. The derivation of equivalent nodal force resulted from the contact forces on the crack 
surfaces in the XFEM formulation 
 
In the case that the contact surfaces are embedded in the interior of element, the contact pairs can be 
easily formed at the positions where the crack line/surface intersects the edges of the element. The 
two contact points in one contact pair have the same coordinates as the intersection point. Let cx be 
the position of any contact pair. Then the displacement jump can be computed according to 
(10)~(12) and obtained as  

( )[ ][ ] ( ) ( ) ( ) ( )∑∑
==

+=−=
nd

k
kck

nd

j
cjHjccc NrN

1
1

1

21 22 cxxbxuxuxu     (14) 

Where, 1
cx  and 2

cx  are two contact points in the contact pair located on crack surface 1
cΓ  and 

2
cΓ  respectively. Because no initial gap exists between the two contact surfaces, ccc xxx == 11 . 

 
The equivalent nodal forces Fc can be obtained from virtual work done by the contact forces P 
acting at the contact points. It is assumed that the element is cut by contact surface into two pieces, 
as shown in Figure 2. In order to clarify the following procedure for more general cases, the nodes 
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are assumed to be enriched by both the generalized Heaviside and branch functions. In Figure 2, we 
focus on the contact pair i1 on the edge “s”, and the two contact points belonging to the 1

cΓ and 2
cΓ  

are denoted as 1
1i  and 2

1i  respectively. For every contact pair, the contact force acting at the point 
1
1i denoted by vector 1iP  is used to represent the pair of contact forces.  

2
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Figure 2  The element cut by contact surface and the contact forces 

 

Then using (14), the virtual work done by the contact force at the contact pair i1 is 
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As the contact pairs locate on the edges of element, so only the two shape functions related to nodes 
on the edge are nonzero. For example, in Figure 2, cx locate on the edge "s", therefore only the 
shape function of nodes s1 and s2 may take nonzero values. The virtual work is then transformed 
into 
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Where,  
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1i
cF  is the equivalent nodal loads resulted from the contact forces 1iP  acting at the contact pair i1 

on the embedded contact surfaces in one element. Thus the total nodal loads cF resulted from the 
contact forces can be obtained by assembling 1i

cF  for every contact pair i1. 
 
4. Solution procedure 
 
The equilibrium equation (13) and the contact equations (5) lead to the system equations which 
have the forms 
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Where, NC is the total number of contact pairs. The unknown vectors of displacement du and 
contact forces dP in the form of increment are grouped and denoted by vector z, i.e., z={du, dP}T. 
The second to fourth equations in Eq. (18) are B-differentiable equations, because “min” operator in 
(5) is B-differentiable[5].  
 
Because of the nonlinearity and non-smooth properties of (18), an iterative B-differentiable Newton 
method [6] which is an extension of classical Newton method, is employed for solving the system 
equations (18).  
 
5. Numerical examples 
 
5.1. 2D square plate with a crack 

 
A square plate with 20 ×20m including a center crack oriented at 45° relative to the horizontal is 

considered. In order to examine the accuracy of the proposed method, two different discretizations 
by quadrilateral finite elements, which denoted as Model I and Model II respectively, are 
constructed as shown in Figure 3. In the Model I, the mesh is uniform and the crack intersects the 
elements at the two adjacent sides. In the Model II, the crack intersects the elements at the two 
opposite sides. The material is elastic with the properties: Young’s Modulus 10GPa, Poisson’s ratio 
0.3. The bottom boundary of the plate is fixed. At the top boundary, uniform displacements with the 
value of -0.1m in vertical direction are prescribed. In this example, we assume that the crack surface 
can slide but the crack tip will not advance. The different friction coefficients with 0.1, 0.8 and 1.2 
are used to test the convergence of the proposed method.  
 
The results show that the convergent solutions can be obtained for the three frictional coefficients. 
The total reaction forces at the top boundary for different frictional coefficients are given in Table 1. 
And the contours of displacement in the case of frictional coefficient 0.1 for the two different 
discretizations are shown in Figure 4. Table 1 shows that for the two different discretizations, the 
resultant reaction forces agree well with each other for different frictional coefficients. The Figure 4 
shows that the distribution and magnitude of displacements in x and y direction are almost the 
identical for both models. 
 

Table 1 Resultant of reaction force on the top boundary (Unit: N) 
Model μ=0.1 μ=0.8 μ=1.2 
Mesh I 973.3 1107.4 1137.5 
Mesh II 973.7 1108.8 1141.6 

Relative Error 4.11e-4 1.3e-3 3.6e-3 
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(a) Uniform mesh (Mesh I)                (b) Non-uniform mesh (Mesh II) 

Figure 3 Two finite element discretizations of the square plate 
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Figure 4 Distribution of displacement in the square plate for frictional coefficient 0.1(Unit: m) 
 
 
5.2. Frictional contact of two parts of a 3D beam 
 
In this example, a beam is divided into two identical parts by a contact surface shown in Figure 5. 
In order of comparison and validation, two finite element models denoted by Model I and Model II 
are constructed. In Model I the contact surfaces are embedded in the elements, while in Model II the 
contact surfaces coincide with the element boundaries. The finite element discretizations for the two 
models are given in Figure 6. The presented method in the framework of XFEM is used for solving 
Model I and the standard FEM with B-differential equation method for Model II. The material is 
elastic with the properties: Young’s Modulus 1e10Pa, Poisson’s ratio 0.3, frictional coefficient 0.1. 
At the left end of beams, part of the surface, i.e. the shadow area as shown in Figure 6, is fixed. So 
there are no constraints at the intersection line between contact surfaces and the boundary surfaces 
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of the cantilever beam. The distribution line load in negative X, Y and Z directions with the same 
density of 1e5N/m are applied at the top of free end as shown in Figure 6.  
 
In the Model I and Model II, there are 7 nodes at the top of free end denoted by P1 to P7. The 
displacements at these nodes for the two models are listed in Table 2. It can be seen from this table 
that the displacements of selected points for both models agree well with each other.  
 

Contact surface

3m

2m
6m

Fixed end

qz=-1e5N/m

qy=-1e5N/m

X

Y

Z

qx=-1e5N/m

1/3m

 
Figure 5 Cantilever beam with the planar crack surface 

 

  
(a) Model I       (b) Model II 

Figure 6  Two finite element discretizations for the cantilever beam  
 

Table 2 Displacements of nodes at the top of free end (Unit:  cm) 

Points Direction\Model 

P1 P2 P3 P4 P5 P6 P7 

Model I -1.782853 -1.764749 -1.750595 -1.744385 -1.743544 -1.746958 -1.745677
Model II -1.782816 -1.764712 -1.750557 -1.744346 -1.743506 -1.746919 -1.745638X 

Error 2.1e-5 2.1e-5 2.17e-5 2.24e-5 2.18e-5 2.23e-5 2.23e-5
Model I -0.2448591 -0.0981012 0.0265221 0.1475015 0.26804830.3910484 0.5294690
Model II -0.2450343 -0.0982756 0.0263494 0.1473310 0.26788000.3908819 0.5293037Y 

Error 7.16e-4 1.78e-3 6.51e-3 1.16e-3 6.28e-4 4.26e-7 3.12e-4
Model I -1.517652 -1.460974 -1.424242 -1.389137 -1.354119 -1.318229 -1.269198
Model II -1.516629 -1.459982 -1.423281 -1.388208 -1.353223 -1.317365 -1.268366Z 

Error 6.74e-4 6.78e-4 6.75e-4 6.69e-4 6.62e-4 6.55e-4 6.56e-4
 

Contact surface

P1

P7

 

Contact surface 

P1 

P7 
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6. Conclusions 
 

In this paper, a combined eXtend Finite Element method and B-differentiable equations method for 
solving contact problems in which the contact surfaces are embedded in the elements. There are 
some salient features for the presented methods. Firstly, in the framework of XFEM, it is very 
convenient to construct the finite element meshes with minor consideration of the position of crack 
or contact surfaces. Due to the assumption of small deformation, the contact pairs are easily defined 
at the intersection points between the contact surfaces and the edges of elements. Secondly, the 
contact conditions are formulated as B-differentiable equations by the quantities at the contact pairs 
and satisfied exactly. Thirdly, the B-differential Newton method with guaranteed convergence 
property is utilized to solve the system equations consisting of equilibrium equations and contact 
conditions. The 2D and 3D frictional contact examples show the high accuracy and good 
convergence property of the presented method. 
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