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Abstract  In this paper, a domain formed interaction integral is derived for the evaluation of dynamic stress 
intensity factors (DSIFs) for arbitrary 2D cracks in non-homogeneous materials. The interaction integral is 
formulated by superimposing the actual and auxiliary fields on the path independent J-integral. By selecting 
the appropriate auxiliary fields, the derived interaction integral does not involve any derivatives of material 
properties compared to the available expressions in the literature. Moreover, it can be proved that the 
integrand is valid even when the integral domain contains material interfaces. Therefore, the integrand is 
simpler in form and it can be applied in more general situations. The numerical implementation of the new 
expression of interaction integral is then combined with the extended finite element method (XFEM) without 
tip enriched functions and a benchmark and test problem is presented. Finally, a non-homogeneous cracked 
body under dynamic loading is employed to investigate dynamic fracture behavior such as the variation of 
DSIFs for different material properties. 
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1. Introduction 
 

Dynamic stress intensity factors (DSIFs) are crucial fracture parameters in understanding and 
predicting dynamic fracture behavior of a cracked body. To evaluate DSIFs for both homogeneous 
and non-homogeneous materials, numerous methods have been developed. Among these methods, 
the numerical techniques may be the most convenient and reliable ones to determine the fracture 
parameters for more complicated cases, as discussed below. 
  For homogeneous materials, Kishimoto et al. proposed a modified path-independent J-integral, 
which involves the inertial effects to determine DSIFs combined with the finite element method 
(FEM), and employed a decomposition procedure for mixed-mode problems [1]. Soon after, 
Nishioka et al. derived another dynamic J-integral to determine DSIFs for non-homogeneous 
materials [2]. However, the derived integrand is not well-suited for the finite element method. Kim 
et al. derived an equivalent domain form of the J-integral by using the divergence theorem and 
some additional assumptions [3]. As we known, it is difficult to extract mixed-mode DSIFs using 
J-integral. Instead, the interaction integral, which is known to be superior to both the displacement 
correlation technique (DCT) and J-integral, may be a suitable choice. Song et al. presented a 
domain formed interaction integral, namely M-integral, to investigate the DSIFs for homogeneous 
and smoothly non-homogenous materials [4]. In the formulation, the non-equilibrium formed 
auxiliary fields are employed, which have been discussed by Kim et al [5] and Dolbow et al. [6]. 
More recently, Réthoré et al. presented an interaction integral based on Lagrangian conservation 
for the estimation of DSIFs for arbitrary 2D moving cracks [7]. Most of the previous works are 
concerned with the materials with continuous and differentiable properties. If the above conditions 
are not met, the applications of the interaction integral method are impeded. Moreover, very few 
published papers have considered the cases that there are several material interfaces in the 
interaction integral domain. Actually, such phenomenon generally exists.  

In this paper, the derivation of an interaction integral and its associated domain form without any 
derivatives of material properties is presented. We also present the mathematically rigorous proof 
that the proposed interaction integral method is still valid even when there are material interfaces in 
the integral domain. Several test problems and the comments are provided in the last section. 
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2. Numerical Strategy 
 

The interaction integral utilizes two admissible fields: auxiliary and actual fields. Auxiliary fields 
are based on known fields such as Williams’ solution, while actual fields utilize quantities such as 
displacements, strains and stresses obtained by means of XFEM without tip enriched functions. The 
choice of the auxiliary fields is discussed firstly. Then, the derivation of the interaction integral and 
the introduction of the numerical technique will be provided. 
 
2.1. Interaction Integral 
 

In this work, the asymptotic fields of Williams’ solution are employed as the auxiliary fields for 
dynamic non-homogeneous materials, because the dynamic asymptotic fields of non-homogeneous 
materials show similar behavior to those of quasi-static homogeneous materials around the crack tip 
[8]. In addition, the incompatibility formulation, proposed by Dolbow et al. [6], is selected. In this 
formulation, the auxiliary displacements and stresses are obtained directly from Williams’ solution 
and the auxiliary strains are evaluated from the non-homogeneous constitutive model. The auxiliary 
displacement is given by Eq. (1) 
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The auxiliary stress is given by Eq. (2) 
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Finally, the auxiliary strain is obtained from 
( )aux aux

ij ijkl klS xε σ=                                     (3) 
where ( )ijklS x  is the compliance tensor of the non-homogeneous material. 
  Since the material property involved in the auxiliary displacement is the local value at the crack 
tip, the auxiliary strain fields are not compatible with the auxiliary displacement fields. Next, we 
will focus on the derivation of the interaction integral. The dynamic J-integral for cracked 
homogeneous linear elastic materials is [9] 

1 ,10
= lim ( ) i ij j iJ W L u n dδ σ

ΓΓ→
⎡ ⎤+ − Γ⎣ ⎦∫                            (4) 

  Superimposing the actual and auxiliary fields on Eq. (4) and one can obtain the interactional part 
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The related definitions of the interaction integral are illustrated in Fig. 1. Here, we call attention to 
an important assumption, namely, the auxiliary stress and strain fields are assumed to be related 
through the same elasticity tensor as the actual stress and strain fields 

( )aux aux aux
ij ij ijkl kl ij kl klC xσ ε ε ε ε σ= =                             (6) 

Due to the way in which we have defined the auxiliary fields and the material property 
in-homogeneity, the associated terms do not vanish when we employ the divergence theorem. The 
contour integral is then converted into an equivalent domain integral which involves the term 
induced by the interface together 
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where q  is the weight function varying from unity at the crack tip to zero on BΓ , and 
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11 12 13BΓ = Γ +Γ +Γ                                  (8) 
and tip

ijklS  is the compliance tensor at the crack tip. As shown in Fig. 1, there is bi-material interface 
int erfaceΓ  in the domain and the interface is assumed to be perfectly bonded. Thus, the whole integral 

domain is divided by int erfaceΓ  into two parts, i.e., 1A  and 2A . In addition, *
int erfaceI  in Eq. (7) 

denotes the interface integral and will be discussed below. 
 

 
Fig. 1 Interaction integral domain cut by a material interface 

 
  The line integral corresponding to the interface can be written as 
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To simplify the above equation, we firstly build a curvilinear coordinate system, as shown in Fig. 2. 
 

 
Fig. 2 A curvilinear coordinate system originating from the interface 

 
Then, we have 
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where 1 2( , )x x  and 10 20( , )x x  are the global coordinates of the point p and q, respectively. 1 2( , )ξ ξ  
are the curvilinear coordinates of the point p. 1m  and 2m  denotes the components of the outward 
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normal vector m to int erfaceΓ  at point q. According to the equilibrium condition on the bi-material 
interface, the tractions on both sides of the interface should be equal. We have 

(1) (2)⋅ = ⋅m mσ σ                                   (12) 
Since the interface is perfectly bonded, the derivatives of actual displacements with respect to the 
curvilinear coordinate 2ξ  are equal on both sides of the interface, as a result 

(1) (2)

2 2

( ) ( )∂ ∂
=

∂ξ ∂ξ
u u                                  (13) 

  According to the above assumptions, it can be found that the first term of the interface integral is 
equal to the third one, and the second term is zero. If the mass density of the materials on both sides 
of the interface is equal to each other, we can obtain 

0*
interfaceI =                                      (14) 

In addition, we assign the values auxiliary velocity fields to zero. The interaction integral (I-integral) 
indicated in Eq. (7) can be simplified as 
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  In order to show the advantages of Eq. (15), we will compare it with the traditional J-integral and 
the M-integral given by Song et al. [4]. The J-integral in the form of the stiffness can be expressed 
as 
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The resulting M-integral is 
{ }

{ }
,1 ,1 1 ,

, ,1 ,1 ,1

( )aux aux aux
ij i ij i ik ik j jA

aux aux aux
ij j i i i ijkl kl ijA

M u u q dA

u u u C qdA

σ σ σ ε δ

σ ρ ε ε

= + −

+ + −

∫
∫ &&

                    (17) 

Through rigorous proof, we can conclude that the M-integral is totally equivalent to the I-integral. 
However, the expressions are quite different. It can be found that the derivatives of material 
properties exist unavoidably in both the above equations. Differently, the I-integral in Eq. (15) does 
not involve any derivatives of material properties. Moreover, in certain conditions, the I-integral is 
still valid even when the integral domain contains material interfaces. Therefore, the applicable 
range of the present interaction integral is wider than that of the two methods mentioned above for 
non-homogeneous materials. 
 
2.2. Extended Finite Element Method without Tip Enriched Functions 
 

By enriching the standard approximation with additional functions, the extended finite element 
method (XFEM) allows for the modeling of arbitrary geometric features independently of the finite 
element mesh. This advance has provided a convenient computational tool for modeling 
discontinuities and their evolvements. However, if both the strong discontinuities i.e., cracks and 
the weak discontinuities i.e., inclusions exist in the domain, especially when the crack tip 
approaches near the inclusions, it is difficult to obtain the accurate solutions i.e., stress intensity 
factors (SIFs) using the XFEM technique. In addition, in the XFEM modeling of cracked problems, 
the corresponding analytical results are pre-requisite. If the analytical solutions are difficult to 
obtain or are very complex themselves, the application is not convenient. Based on the above 
reasons, Wang et al. proposed a numerical method, named as extended finite element method 
without tip enriched functions, for modeling crack growth in particle reinforced composite materials 
[10]. We employ this numerical method to determine the basic solution of the boundary value 
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problems. Then, the mixed-mode SIFs can be easily extracted from the Irwins’ relation after we get 
the values of the I-integral. The Newmark’s method of direct integration schemes is used in 
dynamic analysis finally. 
 
2.3. Numerical Examples 
 

Young’s modulus and mass density vary exponentially, such that /E constentρ ≡ , as given by 

0 1 2exp( )E E x yβ β= +                                (18) 

0 1 2exp( )x yρ ρ β β= +                                (19) 
where 0E  and 0ρ  are Young’s modulus and mass density for initial values. 1β  and 2β  are the 
non-homogeneity parameters along the x- and y- directions, respectively. When  1β  and 2β  are 
equal to zero, the above two equations return to the case of homogeneous materials. A constant 
Poisson ratio of 0.3 is used during the whole simulation and the plane strain status is assumed. The 
geometry and the boundary conditions are illustrated in Fig. 3. The data used in the computation are: 

20L mm= , 40D mm= , 2 4.8a mm= , 0 199.992E GPa= , 3
0 5000 /kg mρ = , 7.34 /dC mm sμ= . 

The time is normalized with respect to the dilatational wave speed ( dC ), and the DSIFs are 
normalized with respect to 

0 0K aσ π=                                    (20) 
where the 0σ  is the magnitude of the applied stress and a  is half of the total crack length. A time 
step is 0.1t sμΔ = .  
 

 
 

Fig. 3 Center cracked tension specimen: (a) non-homogeneous materials (b) exponentially graded 
materials in the y-direction 

 
  In order to employ severe material gradations, relatively high β  values are assigned: 1 0.1β =  
and 2 0.1β = . Here, the units corresponding to the material gradation parameters are millimeters. 
Material properties vary simultaneously along both the x- and y-directions according to Fig. 3(a). 
Fig. 4 shows DSIFs at the right crack tip calculated by the present I-integral and M-integral and the 
reference ones in the paper written by Song et al. [4]. It can be found that there is an excellent 
agreement between the present numerical results and the reference ones. It demonstrates that the 
present method is valid for the fracture problems of such materials. 

L

D
2a

L

D
2a

( )a  ( )b



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-6- 
 

  Next, we consider material properties that vary along the y-direction as shown in Fig. 3(b). The 
material gradation parameter 1β  is set to 0 and 2β  is set as 0, 0.05 and 0.1. Since material 
properties vary along the y-direction, the material properties are the same at both crack tips. 
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Fig. 4 Normalized DSIFs calculated by different methods 
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Fig. 5 Normalized mode I DSIFs for different material gradations along the y-direction 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ß 2=0.0

ß 2=0.05

ß 2=0.10

N
or

m
al

iz
ed

 K
II (

R
ig

ht
 c

ra
ck

 ti
p)

Normalized Time

ß 1=0.0

 
Fig. 6 Normalized mode II DSIFs for different material gradations along the y-direction 

 
  Fig. 5 and Fig. 6 show the mixed-mode DSIFs at the right crack tip. It is obvious that ( )IK t  is 
identical at both crack tips, while the magnitude of ( )IIK t  at the left crack tip is equal in 
magnitude and opposite in sign to the value at the right crack tip. So we only list the results at the 
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right crack tip. The initiation time at both crack tips remains the same for all cases of material 
gradations because of the same definition of material properties. Values of ( )IIK t , induced by 
material gradients, are more sensitive with increasing β , whereas the maximum magnitude of 

( )IK t  is relatively insensitive to β . However, the magnitude of ( )IIK t  is relatively small 
compared to that of ( )IK t . 
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