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Abstract  A 2-D plane strain finite element simulation of rolling contact in wind turbine roller bearings is 
used to study very high cycle fatigue (VHCF). Focus is on fatigue in the inner ring, where the effect of 
residual stresses and hardness variation along the depth are accounted for. The purpose here is to ensure that 
VHCF failure does not initiate. For the purpose the Dang Van multiaxial fatigue criterion is applied, 
simulating the contact on the bearing raceway by substituting the roller with the Hertzian static pressure 
distribution. Contact without friction is assumed here and the material used for the simulation is taken to be 
an AISI 52100 bearing steel. Both an initially stress free bearing and different residual stress distributions are 
considered. An assumed residual stress distribution, equilibrated by an elastic step calculation, is 
subsequently subjected to the stresses caused by the contact with the roller. The effect of variable hardness 
along the depth is also studied, relating its values to the fatigue limit parameters for the material and it is 
found that its distribution can have a significant influence on the probability of failure for bearings subjected 
to VHCF loading. 
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1. Introduction 
 
It has been seen [1,2] that one of the important reasons of corrective maintenance for a wind turbine 
is a failure due to rolling contact fatigue (RCF) in one of the bearings in the gear box [3]. Therefore, 
the interest on the reliability of gearboxes grew over the last years [4,5]. Though failure rates in  
electrical systems and other subassemblies in a wind turbine are in fact higher, or at least 
comparable with faults in the gearbox, recent studies [68] show that the downtime, in terms of 
hours lost per failure, is much higher for latter ones. This, rather than the failure rate, is therefore 
one of the main reasons for the industry's focus on these subsystems. 
In the gearbox, the bearings used are mostly roller bearings, due to the high loads involved. Even if 
the lubricant is kept clean and the bearing is properly lubricated, roller bearings sometimes 
experience rolling contact fatigue that appears as a crack starting below the surface of the inner race 
[9]. Once nucleated, this crack quickly propagates to the surface, resulting in particles of material 
flaking and leading to the failure of the bearing. Roller bearings for wind turbine applications 
operate in the fully elastic range and are subjected to a very high number of load cycles, with an 
expected life of 20 years [10]. However, practical experience show a high life scatter in these 
machinery elements, with failures that sometimes occur after a few years. The failure of these 
elements is thought to be due mainly to inhomogeneities and nonmetallic inclusions, that act as sites 
for crack nucleation under rolling contact fatigue. The cracks usually nucleate around inclusions, 
where the material experiences high stress concentration and typical butterfly defects are observed. 
The modelling in the present paper is focused on ensuring that the cyclic stress fields stay within 
limits so that very high cycle fatigue damage does not initiate. Several multiaxial fatigue models 
have been developed [1115], and some of them have been applied to RCF problems. The Dang 
Van criterion [16] and its further modifications has been widely used, over the last decades,  in 
automotive industry [17] and in rolling contact problems as railwails and bearings [18,19]. It seems 
that the Dang Van criterion is not sufficiently conservative for negative values of the hydrostatic 
stress, therefore a modified version has been recently proposed [20], predicting a less sensitive 
behavior with respect to this stress component. This paper also includes a study of the overall effect 
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of pre-existing residual stresses in the material, resulting from hardening process. Using the Dang 
Van criterion, different residual stresses and hardening distributions are studied, and results are 
compared. 

2. Problem formulation 
 
Part of the initial geometry of the inner ring of the roller bearing is illustrated in Fig. 1. The inner 
ring and the shaft have been considered as one body of external radius R=Rs+tk, where Rs is the 
shaft radius and tk is the thickness of the inner ring. This assumption is equivalent to neglecting 
contact stresses related to the mounting and any local stress concentrations at the interface between 
ring and the shaft. 
In order to reduce the computational time, only an angular sector of the solid, with angular width 
α=10°, has been modeled. Far away from the surface, the region analyzed is terminated by a 
circular arc boundary with radius r. Along the edges, the solid is free to slide in the radial direction, 
being constrained in the direction perpendicular to the edges. A cartesian coordinate system Oxyz is 
used, with the origin O in the center of curvature of R, the axis z pointing out of the paper, and the 
axes x and y, respectively, horizontally and vertically aligned. As a 2-D model is studied, no edge 
effects in the direction perpendicular to the plane of the model are accounted for. The pressure 
acting on the raceway and resulting from the contact with the roller, is evaluated according to 
classical Hertzian theory, and is considered identical in any plane parallel to xy: 

                             pሺx,yሻ=p0 [1-(
x-xp

a
)2-(

y-yp

a
)2]0.5	                       (1) 

In Eq.(1), p0 is the maximum value of the pressure, xp and yp the coordinates of the center of the 
contact area, a the semi-width of the contact area under the roller and x and y the coordinates of a 
generic point on the surface in the contact area. The value of p0 is related to the force acting on the 
roller by the relation 

                                    p0= ට
q






	                                  (2) 

where  is function of the Young moduli Ei and Poisson ratios i of the roller and the inner race, 
here assumed of the same material. The constant  is a pure function of the curvature radii and 
q=F/L is the force per unit length acting on the roller.  
A bearing with the inner ring thickness tk=19 mm, mounted on a shaft of Rs=200 mm, has been used 
in the simulations. Furthermore values of 70 mm and 20 mm, respectively, are assumed for the 
length and the radius of the roller. A load of 37 KN is considered pushing the roller against the inner 
race, resulting in a static Hertzian maximum pressure p0~1	GPa. The contact is assumed continuous 
without any vibrations effects. No friction or sliding are here accounted for. 
The pressure distribution, that simulates the contact, is assumed to move along the surface, in a 
region where the mesh is uniform. Far away from the zone affected by the contact stresses, instead,  
the elements are stretched, both in the radial and in the tangential direction, close to the edges.  
The material is considered isotropic, with Young modulus E=210 GPa and Poisson ratio =0.3. 
In terms of the displacement components ui on the reference base vectors the strain tensor is given 
by 

                                  εi,j=
1

2
(u

i,j
+uj,i)                               (3) 

where (),j denotes partial differentiation. The equilibrium equations, written in terms of the stress 
tensor σij and the strain tensor εij, are obtained by the use of the principle of virtual work: 
 

׬                               σijδεijV
dV= ׬ TiuiS

dS                          (4) 
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where V and S are the volume and surface of the region analyzed, and Ti are the specified surface 
tractions. 

 
                       (a)                             (b)  

Figure 1. (a) Geometry used to model the problem: r=100mm, Rs=200mm, tk=19	mm, α=10°. (b) A detail 

of the mesh used.  

 
2.1 The Dang Van criterion 

 
A brief introduction to the basis of the fatigue criterion used will be given (see further details in 
[16]). The Dang Van criterion is a stress based multiaxial fatigue criterion. It relates the variation of 
the stress state in a material point to a critical parameter, that should not be reached: 

                                    f [σij(t)]	≤	λ                               (5) 

The critical value λ is usually function of the fatigue limits in pure torsion, w, and the fatigue limit 
in pure bending, σw, and its choice is essential in a multiaxial criterion since it establishes which is 
the most important stress component that is assumed to have influence on the failure. The Dang Van 
criterion, in particular, can be formulated as: 
                                 max(t)+αDVσH(t) ≤  w                          (6) 

where 

                                   αDV= 3 (
w

σw
-

1

2
)                              (7) 

is a constant that depends on the material fatigue limits previously mentioned, σH(t) is the 
instantaneous hydrostatic component of the stress tensor and max(t) is the instantaneous value of the 
Tresca-like shear stress  

                                   max(t)= 
σIෝ (t)-σIIIෞ (t)

2
                             (8) 

The stress deviator is obtained by the usual definition: 

                                  sij(t)=σij(t)- δijσH
(t)                            (9) 

Then a constant tensor, sij
m, is calculated by solving the minmax problem 
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                            sij
m=min

sij
*

maxt [(sij (t)-sij
*)(sij (t)-sij

*)]                    (10) 

and the shifted deviator tensor is defined as 

                                   sijෝ (t)=σij(t)- sij
m                             (11) 

The principal values of the shifted tensor appear in Eq. (8). 
The problem in Eq. (10) is solved iteratively using a move limit approach : 

                      	sij
m=min

sij
*

maxt  [(sij (t)-sij
*)(sij (t)-sij

*)] =min
sij
*

[max
t

  ]             (12) 

with 

                                  = (t,  sij (t),  sij
*)                           (13) 

Choosing an arbitrarily starting value for sij
*, for example the average deviatoric stress tensor in the 

stress history for that material point, then for every iteration we identify the maximum value of . 
Let tm be the time step at which max  happen, then the value of sij

* 	is updated  

                                     sij
*=sij

*+	dsij
*                              (14) 

with  
                                  dsij

*=  (sij (tm)-sij
*)                           (15) 

which can be interpreted as a modified steepest descend method. If at one step  increases,  is 
reduced to 0.25 . The iteration is stopped if the norm of the difference between s୧୨

∗  at the current 
iteration step k and at the previous step falls into a tolerance range: 

                                  ቛsij
*]k-sij

*]k-1ቛ ≤	εtoll                           (16) 

Although a superimposed hydrostatic tension has an effect on the fatigue life in normal cyclic 
loading [21], several studies [11] have shown that a superimposed mean static torsion has no effect 
on the fatigue limit of metals subjected to cyclic torsion. The independency of the mean shear stress 
is correctly predicted through the minimization process in Eq. (10), see also [20]. The Dang Van 
criterion could also be used with ୫ୟ୶ሺtሻ representing the maximum shear stress at every point of 
the stress history. Then, one would not account for the experimental observation that in cyclic 
torsion fatigue failure is independent of the mean shear stress, and this would usually result in lower 
permitted stress levels. 
The Dang Van proposal is equivalent to request, in the σH(t) - max(t)  plane, that all the 
representative points of the stress state, fall below the line intersecting the max(t) axis in w with 
a negative slope of α: if all of the points fulfill this requirement, the criterion predicts a safe life for 
the component (see Fig. 2). 
The original Dang Van safe locus predicts a detrimental effect of tensile hydrostatic stress while an 
over-optimistic positive effect is expected from compressive values. The negative effect of tensile 
mean stress is well known in literature from classic Haigh diagrams, that also show a flat response 
for negative stress ratios [22, 23]. For this reason it is not too conservative to choose a different safe 
locus in the Dang Van plane to be in agreement with this response, for example a bilinear limit 
curve, as proposed recently in [20]. The safe locus could be therefore identified in two segments, 
one with a null slope and the other one with a negative slope equal to α (Fig. 2). For σH(t)≥σA the 
safe region is identical to the original Dang Van region, while for smaller values of σA, the cut-off 
with the flat curve replaces the Dang Van limit curve by a curve more on the safe side. Values of 
σA =σw/3	and of A=σw/2 have been proposed in [20], on the basis of experimental results obtained 
on high-strength steel smooth specimens. However, it is possible to choose a different set of values 
for (σA,	A), though here the same choice has been made. If the ratio of the fatigue limits, σw/w, 
was equal to 0.5, the value αDV in Eq. (6) would be zero, which is far from reality, as steels usually 
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show ratios between 0.57 and 0.8 [21]. Anyway, it is always possible to assume different values of 
σA, more or less conservative than the cut off shown in Fig 2. 
In the following sections, both the original safe locus and a new one with the mentioned cut-off will 
be used, and results will be compared. For w a value of 360 MPa has been imposed [24] and a 
ratio σw/w=√3. With this assumption the value of the constant αDV used in the calculations is 
approximately 0.23205. 

 
Figure 2. The Dang Van safe locus: the dashed line represents the alternative limit curve, for σH(t)<σA, here 

assumed equal to σw/3, as proposed in [20]. 

 
For a material point subjected, at time t, to σH(t) and max(t), the ratio between max(t) and the 
corresponding limit value for that σH(t) is here used to define the damage factor n(t). Points on the 
limit curve, then, result in a unit damage factor; points inside the safe region have damage factor 
smaller than one. As previously mentioned, two different safe loci are here used: one with a linear 
limit curve and another one with a bilinear limit curve. Consequently, a damage factor is here 
defined as 

                                  n(t)=	 max(t)

w-αDV σH(t)
                              (17) 

if referred to the original Dang Van's safety region or 

                          

nሺtሻ=ቐ

max(t)

w-αDV σH(t)
      								if &σH>σA

max(t)

A
                  &if	σH≤σA  

   																																												  (18) 

when the bilinear limit curve is used. As mentioned above, σA and A are chosen equal to σw/3 
and σw/2, respectively. 

3. Results and discussion 
 
The Dang Van criterion has been applied to the rolling contact problem and for the geometry 
described in section 2. The load history has been divided in an adequate number of steps and, for 
each time step, the value of the damage factor n(t) has been calculated, both with the original Dang 
Van limit curve and with the modified one. The maximum value in time 

                                   n= maxt n(t)                                (19) 

is then chosen, as representative for that material point. If this n<1, the prediction is that initiation 
of fatigue failure will not occur in the material point. The representative points corresponding to the 
max value of the damage factor are plotted, in Fig. 3, in the Dang Van region, for all the integration 
points in the region analyzed. 
In Fig. 4 the maximum values of this factor n are plotted against the distance from the surface. 
Both safe regions, as described before, are used. As we can see, n reaches the highest value in a 
sub-surface region, about 0.20 mm below the surface : this is consistent with literature, where a lot 
of sub-surface initiated failures in bearings for windmill applications are reported. 
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Figure 3. The Dang Van criterion: in order that the failure does not occur, all the representative points should 

be inside the safe region delimited by the limit curves. In this figure, and for the problem considered, only 

the representative points corresponding to max value of the damage factor are plotted for all the integration 

points in the region analyzed. 

 
Figure 4. Damage factor versus distance from surface (a) and versus distance from surface  non 
dimensionalized by the half contact width (b). 
  

3.1 Hardness variation 
 
The relationships between fatigue strength, the hardness and the ultimate tensile strength are used, 
in this section, to study the influence of the hardness variation in the inner ring. 
Since fatigue crack initiation is mainly caused by slip within grains, the yield stress, in the past, has 
been thought to have the strongest correlation with the fatigue limit. However Murakami [25] has 
found better correlations between tensile strength, hardness and fatigue limits. 
In order to correlate the hardness to the fatigue limit, w, this limit has first been related to σUTS 
through an approximate expression proposed in [26] for low-alloy steels: 

                                w=σw/√3≈ 0.274	σUTS	                     (20) 

Denoting the Brinell hardness by HB and using an approximate relationship found in [27] 

                               σUTS=0.0012 HB2+3.3 HB	                       (21) 

an approximate final relation between w and HB can be written as 

                              w=0.274 (0.0012 HB2+3.3 HB)                    (22) 

In the following we assume that the fatigue limit w is given by the Eq. (22). If another expression 
w(HB) applies for a material, this will not in principle change the procedure. In fact, all we need is 
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the value of w in each material point of the solid analyzed. 
Different hardness distributions along the depth have been studied here. Thus the value of w 
corresponding to the value of the hardness at that depth has been imposed in the material for each 
Gauss integration point. 
The different hardness distributions imposed in the subsurface region of inner ring and the 
correspondent w distributions are shown in Fig. 5 (a)(d). At distances greater than 1 mm from 
the surface, HB, for distributions (a) and (b), are taken to be constant, at a value such that the 
related fatigue limit, w=w(HB), is approximately 360 MPa. This assumption is equivalent to 
considering how the effect of a surface hardening process would benefit the fatigue response of the 
bearing. Results show that the values of the damage factor n and the depth at which the maximum 
n is reached, are strongly dependent on the particular distribution of hardness imposed (Fig. 6). 

 
Figure 5. Hardness distributions ((a)-(b)) and correspondent values of w ((c)-(d)) in the first millimeter of 

depth . 

 
Figure 6. Damage factor versus distance from surface. In (a) the original Dang Vang safe locus has been 
used, while in (b) the bilinear limit curve, as described in section 2.1. The different distributions are referred 
to Fig. 5.  
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For all the cases analyzed, the peak of the n-curve shifts away from the surface of the inner ring and, 
for cases shown in Figs. 5a and 5b, the peak values of n are smaller than the correspondent peaks 
for a material with uniform hardness. In other words, the rings with extra surface hardening have 
higher safety against fatigue failure. 
 
3.2 Residual stresses 
 
In order to analyze the influence of pre-existing stresses in the bearing, two different residual stress 
distributions have been considered. The bearing with the assumed residual stress distribution, 
equilibrated by an elastic step calculation, is subsequently subjected to the stresses caused by the 
contact with the roller. The results obtained with the Dang Van criterion are then compared with the 
results obtained in the bearing free of residual stresses. 

 
Figure 7. Convention used for the principal stresses in the polar coordinate system. 
 
In Fig. 7 the convention used to name the residual stresses is clarified, while, in Figs. 8a and 8b, the 
residual stress distributions, in terms of principal stresses, are plotted versus the distance from the 
surface. Far away from the surface, the residual stresses are assumed to be constant and near zero. 
The results for the two different safe loci (Fig. 2) are shown in Fig. 9. The pre-existing stress states 
in the inner ring, in the case of the modified safe locus, have little effect, neither positive nor 
negative (Fig. 9a). The residual stresses, in fact, result in a simple shift along the σH axis in the 
Dang Van region (Fig. 2) but this does not change the distance from the limit curve since all the 
most critical material points are subjected to values of σH smaller than σA and therefore they are 
in the region where the limit value for max is constant and equal to A. If the original limit curve 
is used, instead, the residual stress distribution (a) from Fig. 8 results in a reduction of the 
maximum damage factor for the compressive residual stresses, but an increase of the maximum 
damage factor for tensile residual stresses (Fig. 9b). 
 

 
Figure 8. Residual stresses assumed in terms of principal stresses. Distribution (b) is obtained by multiplying 
(a) by -1. 
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                     (a)                                        (b) 
Figure 9. Damage factor versus distance from surface for bilinear (a) and original limit curve (b).  

4. Conclusions 
 
The Dang Van criterion has been applied to a roller bearing for windmill applications and the 
influence of hardness variations and different residual stresses has been studied. Results have shown 
that, according to the Dang Van criterion, the highest damage factor is reached below the surface, 
regardless the safe locus used. This suggests that failure is most likely to initiate in the material a 
little below the surface, which is consistent with literature that reports subsurface failures of roller 
bearings for wind turbine applications. 
The effect of increased hardness, in a thin layer close to the surface, has also been studied, relating 
the hardness to the fatigue strength of the material. The particular hardness distribution induced is 
seen to be important in evaluating the safety against fatigue for the bearing. Assuming that a higher 
fatigue strength corresponds to a higher Brinell hardness, the results indicate that a hardening 
surface treatment will be beneficial in terms of fatigue damage. However, surface hardening is not 
really possible for AISI 52100 bearing steel, though some recent work [28] seems to indicate an 
improvement of fatigue strength, for these steels, by induction heating and repeated quenching. It 
may be noted also that some steels show a maximum for the curve wሺHBሻ, which would limit the 
applicability of Eq. (22). In fact, Eq.(22) is valid only for smaller values of hardness. 
Bearings with different residual stress distributions have also been studied and calculations carried 
out show, for the Dang Van criterion, a positive effect of compressive residual stresses in the 
subsurface region according to the original safe locus. No influence of residual stresses has been 
found with the use of the modified safe locus and for the load case analyzed. 

Acknowledgements 
The author would like to thank Prof. Viggo Tvergaard and Associate Prof. Peder Kilt, Technical 
University of Denmark, for ideas, discussions and comments. This work is supported by the Danish 
Council for Strategic Research, in the DSF center REWIND. 

References 
[1] H. Arabian-Hoseynabadi, H. Oraee, P.J. Tavner, Failure Modes and Effects Analysis (FMEA) 

for wind turbines. Electrical Power and Energy Systems , 32 (2010) 817–824. 
[2] Y. Amirat, M.E.H. Benbouzid, E. Al-Ahmar, B. Bensaker, S. Turri, Brief status on condition 

monitoring and fault diagnosis in wind energy conversion systems.  Renew Sust Energ Rev, 
13 (2009) 2629–2636. 

[3] P.J. Blau, L.R. Walker, H. Xu, R.J. Parten, J. Qu, T. Geer, Wear analysis of wind turbine 
gearbox bearings - Final Report. Oak Ridge National Laboratory 2010. 

[4] K. Smolders, Y. Feng, H. Long, P. Tavner Reliability Analysis and Prediction of Wind Turbine 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-10- 
 

Gearboxes. European Wind Energy Conference–EWEC 2010. 
[5] C.Fernandes, R. C. Martins, Jorge H. O. Seabra, Friction torque of cylindrical roller thrust 

bearings lubricated with wind turbine gear oils. Tribology International (2012) (article in press). 
[6] F. Spinato, P. J. Tavner, G. J. W. van Bussel, E. Koutoulakos, Reliability of Different Wind 

Turbine Concepts with Relevance to Offshore Application. European Wind Energy Conference 
2008. 

[7] F. Spinato, P. J. Tavner, G. J. W. van Bussel, E. Koutoulakos, Reliability of wind turbine 
subassemblies. IET Renewable Power Generation, 3 (2009) Issue 4, 387–401. 

[8] Ma yang, He Chengbing, Feng Xinxin, Institutions Function and Failure Statistic and Analysis 
of Wind Turbine. Physics Procedia, 24 (2012), 25–30. 

[9] F. Sadeghi, B. Jalalahmadi, T. S. Slack, N. Raje, N. K. Arakere, A Review of Rolling Contact 
Fatigue. Journal of Tribology, 131 (2009), Issue 4, 041403–1. 

[10] A. Ragheb, M. Ragheb, Wind turbine gearboxes technologies. Proceedings of the 1st 
International  Nuclear and Reneawble Energy Conference - INREC 2010. 

[11] G. Sines, Behaviour of metals under complex static and alternating stresses, in: Metal Fatigue 
(eds. G. Sines and J.L. Waisman), McGraw-Hill, New York, 1959, pp. 145–169. 

[12] W. N. Findley, Trans. ASME Ser B 81 (1959), 301. 
[13] T. Matake, Bull. JSME 20 (1977), 257. 
[14] D. L. McDiarmid, Fatigue Fract. Engng Mater. Struct. 17 (1994), 1475. 
[15] I. V. Papadopoulos, Fatigue polycyclique des métaux: une nouvelle approche. Ph.d Thesis, 

spécialité: Mécanique, Ecole des Ponts et Chaussées, France, 1987. 
[16] K. Dang Van, Sur la résistance à la fatigue des métaux. Sciences Technique Armement 47 

(1973), 3. 
[17] A.-S. Beranger, J.-V. Berard and J.-F. Vittori, A fatigue life assessment methodology for 

automotive components, in Fatigue Design of Components, in: ESIS Publication, 22, G. 
Marquis and J. Solind (eds.), Elsevier Science, 1997. 

[18] A. Bernasconi, M. Filippini, S. Foletti, D. Vaudo, Multiaxial fatigue of a railwheel steel under 
non-proportional loading. International Journal of Fatigue, 28 (2006), 663–672. 

[19] M. Ciavarella, F. Monno, G. Demelio. On the Dang Van fatigue limit in rolling contact fatigue. 
International Journal of Fatigue, 28 (2006), 852–863. 

[20] H. Desimone, A. Bernasconi, S. Beretta, On the application of Dang Van criterion to rolling 
contact fatigue. Wear 260 (2006), 568–571. 

[21] S. Suresh, Fatigue of materials, Cambridge University Press, New York, 2006. 
[22] R.B. Heywood, Designining against fatigue, Chapman and Hall Ltd., London, 1962. 
[23] T.J. Dalan, in: O.J. Horger (Ed.), ASME Handbook, Metal Engineering Design, New York. 
[24] J. Lai, T. Lund, K. Rydén, A. Gabelli, I. Strandell, The fatigue limit of bearing steels – Part I: A 

pragmatic approach to predict very high cycle fatigue strength. Int. Journal of Fatigue 37 
(2012), 166–167. 

[25] Y. Murakami,  Metal Fatigue: Effects of Small defects and Nonmetallic Inclusions, Elsevier, 
Oxford, 2002. 

[26] B. Atzori, G. Meneghetti, L. Susmel, Material fatigue properties for  assessing mechanical 
components weakened by notches and defects. Fatigue Eng Mater, 28 (2005), 83–97. 

[27] M.L. Roessle, A. Fatemi, Strain-controlled fatigue properties of steels and some simple 
approximations. Int. Journal of Fatigue, 22 (2000), 495–511. 

[28] E.C. Santos, K. Honda, H. Koike, J. Rozwadowska, Fatigue strength improvement of AISI 
52100 bearing steel by induction heating and repeated quenching. Material Science, 47 (2011), 
No. 5, 677 –682. 


