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Abstract  This paper studies the internal stress field of a three-phase elliptical inclusion which is bonded to 

an infinite matrix through an interphase layer when the matrix is subjected to a linearly distributed in-plane 

stress field at infinity. Two conditions are found that ensure that the internal non-uniform stress field is 

simply a linear function of the two coordinates. For given material and geometric parameters of the 

composite, these conditions can be considered as two restrictions on the applied non-uniform loadings. When 

these two conditions are met, elementary-form expressions of the stresses in all the three phases are derived. 

In particular, it is found that the mean stress within the interphase layer is also a linear function of the 

coordinates. If the interphase layer and the matrix have the same elastic constants, the satisfaction of the two 

conditions will result in a harmonic inclusion under prescribed non-constant field. 

Keywords Elliptical inclusion, Interphase layer, Non-uniform loading, Harmonic inclusion, Inverse problem 

1. Introduction 

  Rigorous analysis of a composite system consisting of an internal inclusion, an intermediate 
interphase layer (or coating) and an outer matrix is challenging, especially when the inclusion is 
non-circular (see for example, [15] and the references cited therein). It has been found that the 
internal stress field within a three-phase confocal elliptical inclusion can be uniform and hydrostatic 
when the remotely applied uniform in-plane stresses satisfy a condition [2]. How about the stress 
field within a three-phase elliptical inclusion when the matrix is subjected to non-uniform in-plane 
stresses at infinity? Is there any elementary solution for the case of non-uniform loading? 
  In this paper two conditions are found that ensure that the internal stress field within a 
three-phase confocal elliptical inclusion is a linear function of the coordinates when the matrix is 
subjected to a linearly distributed (non-uniform) in-plane stress field at infinity. Elementary-form 
solution is derived when these two conditions are met. Some special examples are presented to 
demonstrate the solution. In particular, when the interphase layer and the matrix have identical 
elastic constants, the satisfaction of the two conditions will result in a harmonic elliptical inclusion 
under non-uniform loadings. 

2. The Internal Stress Field of Linear Form 

  We study the stress-field of a three-phase elliptical inclusion with two confocal interfaces when 
the matrix is subjected to a linearly distributed stress field at infinity. Let S1, S2 and S3 denote the 
inclusion, the interphase layer and the matrix, respectively, which are perfectly bonded across two 
confocal elliptical interfaces L1 and L2, as shown in Fig. 1. Throughout the paper, the subscripts 1, 2 
and 3 are used to identify the respective quantities in S1, S2 and S3. 
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For plane deformations of an isotropic elastic material, the in-plane displacements u and v, the 

two resultant forces fx and fy, and the in-plane stresses xx, yy and xy can be expressed in terms of 
two analytic functions (z) and (z) of the complex variable z=x+iy as [6] 
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where  43  for plane strain, and )1()3(    for plane stress;   and  , where 

0  and 5.00  , are the shear modulus and Poisson’s ratio, respectively. 

  In the physical z-plane, the boundary value problem for the three-phase elliptical inclusion takes 
the form: 

    ;   ,)()()(
2

1
)()()(

2

1

,)()()()()()(

11111
1

2222
2

111222

Lzzzzzzzzz

zzzzzzzz













     

  (3) 

    ;    ,)()()(
2

1
)()()(

2

1

,)()()()()()(

23333
3

2222
2

333222

Lzzzzzzzzz

zzzzzzzz













     
 

(4) 

),1()i()(    ),1()i()( 2
213

2
213 OzBBzOzAAz      as   z     (5) 

where A1, A2, B1 and B2 are real numbers related to the applied linearly distributed stress field at 
infinity. 
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Figure 1 Three-phase elliptical inclusion with an internal stress field of linear form 
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  Consider the following conformal mapping [2, 6] 
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which maps the segment [2R 2R] onto the unit circle in the -plane, and the two interfaces L1 and 
L2 are mapped onto two coaxial circles with radii R1 and R2, respectively. Thus the three regions S1, 

S2 and S3 are mapped onto the annuli 11 R  , 21 RR    and 2R , respectively, as shown 

in Fig. 2. For convenience we will write 3,2,1  )),(()(  )),(()(  iiiii  . 

 
  In the mapped -plane, the boundary value problem takes the form 
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where 1=1/2 and 3=3/2 are two stiffness ratios. 
  In order to ensure that the internal stress field is a linear function of the coordinates x and y, 1() 
and 1() must take the following forms 

Figure 2 The mapped -plane 
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where X and Y are complex constants to be determined.  
  Consequently it follows from Eqs. (7) and (10) that 
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  It is found that the necessary and sufficient condition for the validity of Eq. (10) for the internal 

stress field is that 2() should take the form of )1()( 22
2    with  being a complex 

constant. This condition can be easily arrived at from Eq. (2.14) in [2]. The necessity is true only 
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  Once the above relationship is satisfied, and all the interface conditions in Eqs. (7) are enforced, 
2() and 2() are found to have the following expressions 
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  Similarly by enforcing the interface conditions in Eq. (8), we arrive at the following expression 
of 3() and 3() 
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  In addition the satisfaction of the remote boundary condition in Eq. (9) will yield 
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  It turns out that the necessary and sufficient condition for the existence of the complex coefficient 
X simultaneously satisfying Eqs. (16) and (17) is: 
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  If the two conditions in Eq. (18) are met, the internal stress field of linear form within the 
elliptical inclusion is given by 
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where X1 and X2 are the real and imaginary parts of the complex number X, which is determined by 
either Eq. (16) or Eq. (17). For example, it follows from Eq. (16) that 
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  Furthermore it is deduced from Eqs. (2) and (13)1 that the mean stress is linearly distributed 
within the interphase layer as 
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By making use of Eqs. (16) and (17), 3() and 3() in Eqs. (14) and (15) can be re-expressed 

into 

   
      

,
))(1)(1(

)()4(4)1()1(2)1(

)1(2))(()1(2)1(2))(()1(

)i()(

22
1

2
1321

121
6

1211
2

111121
4

13
4
2

1
2

1
2

1113
2
21

2
1

2
11123

2
21

2
3



































RR

RRXRXR

XRRXRXRRX

AAR

)( 2R    (24) 

 

 
 

      
,

))(1)(1(

)()4(4)1()1(2)(

)1(2))(()(2

)1(2))(()(

)1())(1)(1(

2)(2
)i()(

22
1

2
1321

121
6
1211

2
111121

4
133

1
2

1
2

11133
2
2

1
2

1
2

111233
4
2

222
1

2
1321

2
2

22
2

2
2

2
22

21
2

3




















































RR

RRXRX

XRRXR

XRRXR

RR

RRRR
BBR

 

)( 2R  (25) 

where the two complex constants  and  are defined as 
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  It is found that 3() and 3() given by Eqs. (24) and (25) are analytic outside the circle R2 (in 
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view of the fact that 012   for 2R ) and meet the asymptotic condition in Eq. (9). 

It can be easily proved that under a linearly distributed stress field at infinity, the internal stress 
field within an elliptical inclusion perfectly bonded to the surrounding matrix is always a linear 
function of the coordinates. The above obtained results demonstrate the interesting fact that the 
internal stress field within a three-phase elliptical inclusion can still keep a simple linear form if the 
remotely applied non-uniformly loadings satisfy the two conditions in Eq. (18). 

3. Discussions 

  In this section several typical examples will be presented to illustrate the application of Eq. (18) 
to the design of three-phase elliptical inclusions when the matrix is subjected to a linearly 
distributed stress field at infinity. 

3.1.  The materials comprising the interphase layer and the matrix are identical ( 32    and 

32   ) 

In this case, Eqs. (18) becomes 
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  In particular, if the inclusion is a hole ( 11  ), Eqs. (27) and (28) become 
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On the other extreme end, if the inclusion is rigid ( 11  ), Eqs. (27) and (28) become 
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  It is deduced from Eqs. (13) and (14) that 
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which implies that the mean stress in S2 and S3 is not disturbed. Thus the elliptical inclusion is 
harmonic when the remote non-uniform loadings satisfy the two restrictions given by Eqs. (27) and 
(28). It seems that the discussion on harmonic elliptical inclusions under non-uniform loadings has 
not been recorded in the literature. Previously harmonic elliptical inclusions were found only for 
remote uniform stresses [2, 7, 8]; whereas only non-elliptical harmonic inclusions were found for 
non-uniform loadings [9, 10]. 
  Results similar to those derived in this subsection can also be obtained from Eq. (18) by letting 
=1, or by assuming that the materials comprising the inclusion and the interphase layer are 

identical ( 21    and 21   ).  

3.2.  Extremely compliant interface layer ( 11  , 13   and 1 ) 

In this case, Eq. (19) and (20) become 
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  The above two equations together with Eq. (18) give us very simple formulas for determining the 
restrictions on the remote non-uniform loadings when the interphase layer is much more compliant 
than both the inclusion and the matrix. 

3.3.  Relatively rigid interphase layer ( 11  , 13   and 1 ) 

In this case, Eqs. (19) and (20) become 
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  The above two equations together with Eq. (18) also give us very simple formulas for 
determining the restrictions on the remote non-uniform loadings when the interphase layer is much 
stiffer than both the inclusion and the matrix. 

3.4.  A three-phase circular inclusion ( 1R ) 

In this case, Eqs. (19) and (20) reduce to 
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4. Conclusions 

  Similar to the case of uniform loading [2], confocal elliptical interfaces are used in the present 
design to achieve an internal stress field of linear form under a linearly distributed stress field at 
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infinity. Two conditions given in Eq. (18) are derived that ensure that the internal field is a linear 
function of the two coordinates x and y. These two conditions can be considered as restrictions on 
the remote non-uniform stress field for given material and geometric parameters of the composite. 
The specific expressions of the two conditions, which are generally rather tedious, will become very 
concise for the four special cases: (i) the interphase and the matrix have the same elastic constants; 
(ii) the interphase layer is extremely compliant; (iii) the interphase layer is rather stiff; (iv) the 
three-phase inclusion is circular. 
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