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Abstract

This paper presents an investigation of the elastic-plastic deformation behaviour of a crack
embedded in a layer which is sandwiched between two elastic adherends subjected to mode
I'loading. The stress intensity factors of cracks, contained in a layer, subjected to arbitrary
surface wr2wiione uve been solved using integral transform techmigus, from which
approxiimate sclutions have been constructed. For luyers with an elastic modulus lower
than that of the adherends, the plastic yielding under the constraint of the elastic adherends
exhibits two distinctly different regimes. A strip yielding solution has been obtained for the
length of the plastic zone, which depends on the ratio of elastic modulus and crack length
to layer thickness ratio. It has been found that the higher the modulus ratio, the sharper the
transition between these two regimes. The agreement between the theoretical solution and
finite element analysis is generally good.

Introduction

Layered structures which are consisted of two or more dissimilar adherends joined
together with thin, ductile layers have been employed in a wide range of applications.
Examples include adhesively bonded joints, a variety of composite materials, and ceramics
joined by metal foils. For these structures the integrity of the layer and/or the interface
between the layer and the substrate are often critical to the mechanical performance.
Therefore understanding of the fracture behaviour of these material systems is not only of
great importance to the technological advances in improving the quality of joining, but also
essential to establishing appropriate design criteria for evaluating structural integrities.

Up to now in modelling the crack problems of layered materials, attention has been mainly
focused on brittle layers [1] having low fracture toughness. The extent of the failure
process is confined to a region much smaller than the relevant geometric length scales,
such as layer thickness, thus the linear elastic fracture mechanics theories are applicable.
However. for materials used in adhesive bonding or metal foil bonding, the layer is often
made of very ductile materials to enhance the damage tolerance of a bonded structure. For
instance. the structural adhesives [2] used in bonded joints are often toughened using
additives such as rubber particles, which may undergo extensive plastic deformation prior
to final fracture. In these cases, the plastic zone size at failure is generally greater or
comparable to layer thickness [3]. Furthermore it has been found that in the case of metal
foils [4,5] the fracture process is dictated by the nucleation and growth of voids at
distances several foil thickness ahead of the crack tip, unlike for a crack in a bulk solid
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where voids nucleate and grow ahead of the crack tip within distances of the order of the
crack tip opening. One important ramification of this difference in the fracture mechanisms
is that crack tip opening displacement or the J-integral may fail to provide a unique
fracture parameter for bonded structures, as both parameters characterise only the near tip
deformation behaviour, hence unable to capture the essential features of fracture process
occurring ahead of the crack tip at distance far greater than the crack opening.

Although elasto-plastic fracture mechanics for homogeneous materials is now highly
advanced and mature, similar methods for constrained layers are virtually non-existent. In
the case of fracture of homogeneous solids under large scale yielding conditions, the
cohesive crack model by Dugdale [6] and Barrenblatt [7] provides a powerful tool for
determining the plastic zone length and the crack tip opening displacement. The aim of this
paper is to present a solution for the spread of plastic deformation in a constrained layer.
The problem of a crack contained in a thin layer which is sandwiched between two elastic
substrates of different modulus has been formulated using Fourier transform technique,
which reduce the problem to a single integral equation. A simple, approximate solution has
also been constructed based on the exact solution of the integral equation. The predicted
plastic zone length was found to be in good agreement with finite element results.

Stress Intensity Factors for Cracks in a Constrained Layer

Let us first consider the case of elastic adhesive, as the plastic zone length can be
determined by cancelling the stress intensity factor at the end of the plastic zone, similar to
that proposed by Dugdale [6]. To this end, ideally a Green function for the stress intensity
factor of a crack embedded in a

constrained thin layer is required, which o

is the stress intensity factor caused by a T T T T T T T T T T T T
pair of point forces acting at an arbitrary ry Vs
position on the crack faces. However, no
solutions are presently available, except
in the special case that the adhesive and [T77%
the substrate have identical elastic |,
properties. In the following, we will

adopt a method similar to that used by TA 2a Tn
Sih and Chen [8] to formulate the

problem  using  Fourier transform g Ha V2
hnique. Assume that th k surfaces
i et o a wien v v v v P UL

0,(x0)=-p(x), the Airy stress

functions for the adhesive layer and the
substrates can be expressed in terms of
Fourier Transforms, and after some lengthy manipulations the problem can be reduced to a
single unknown A(s) that satisfies a pair of dual integral equations,

Fig.l A crack in a constrained layer

J-m SF,(s) A(s)cos(sx)ds = % p(x) (x<c¢) (la)
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JmA(.Y) cos(sx)ds=0 (x=¢) (1b)

where function Fi(s) is given by the following expression, correcting a typographical error
in Ref. [8],

2 —2sh —4sh
a, +[a,(sh)"+aJe™" +a,e
P (o) 2 St [0 (6RY +a] . o
st A (V/’l)e':"h U e—.un
| 2\ 4

where h denotes the half the layer thickness, and a, a2, a3, and a4 are dependent on shear
modulus ratio, u, / u,, and the Poisson’s ratios, v, and v, of the adhesive and substrate,
respectively; expressions can be found in Ref.[8]. The dual integral equations can be
further reduced to a single Fredholm integral equation after making the following
representation,

As) = I:¢(r>J(,<.vz)dr 3)
and hence
¢(r)+r_[:¢(x)l<(r,x)dx = I,E[;L):dx “4)
where
K(t,x)= J:}[ﬁ (8) = 114 (s1) Jo (sx)ds (5)

The stress intensity factor is given by

K= 2¢(c)

6
ey (6)

In the case of uniform traction, p(x) =0, the right-hand side of the integral equation (4)
becomes motr /2, and it is easy to
verify that the stress intensity
factor for a central crack in a single
material, K =0'«/E, is recovered,
noting F,(s) =10.

20

12

10f
E /E,=0.5

The integral equation (4) can be

solved using  Gauss-Legendre

method. A convergence study

showed that an accuracy of 0.1%

in stress intensity factor could be

achieved for N=060. The numerical

results of the integral equation are

shown in Fig.2, which agree with i

those reported in Refs. [8,9] using 0.1 | 10 100

a slightly different solution method.

It should be ponn(efi, how%‘v‘er, thfn Erackilsreh a/h

a fundamental error occurred in =

Ref.[8] regarding the limiting case Fig.2 Stress intensity factors of a crack embedded in a

of h/a—0. The asymptotic solution constrained layer. Symbols: numerical solution of the
integral equation. Solid lines: approximate solution.

E /E,=0.1

E /E,=0.01

E,/E,=10"

Stress intensity factor K/o(h)
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of the dual integral equations (1) in this case cannot be simplified by setting F(s) equal to
a constant, thus reducing the problem to a single material crack with the applied stress &
being replaces by 4, (1-v,)/ 1, (1—Vv,)o, as suggested by Sih and Chen [8]. This can be
easily demonstrated by letting F\(s) equal to a constant and then solve the integral equation
(4). The correct stress intensity factor for this limiting case is given by [13], derived using
J-integral theory.

The results shown in Fig.2 indicated two distinctly different regimes, denoted here as the
‘short crack’ and the ‘long crack’ regimes. For crack lengths far shorter than the height of
the layer, the crack field is not perturbed by the constraint imparted by the substrates.
However, in the ‘long crack’ limit, viz crack length much greater than layer thickness, the
stress intensity factor is strongly influenced by the ratio between adhesive and substrate
moduli. Two important scaling relations have been identified by the analytical formulation,
as indicated in Fig.2, which are respectively the elastic modulus ratio (M, / u,) and crack
length to layer thickness ratio (¢/h). Since no closed-form solutions of the integral equation
are possible, it is desired to construct an approximate solution to provide an accurate
interpolation over the full range of the two key scaling parameters mentioned above.

Apart from the short crack limit, the two branches at the long crack limit that ought to be
recovered as special cases are (i) K=o+vh as p,/ i, — 0 [10,11] and (i)
K=o~mc\ u, ! 1, as hlc—0, see e.g. Refs.[12,13]. One closed-form solution has been
recently derived [13],

K=Y,(h/c E, | Ey)omc 7

where

rE, ” % ‘|1/2
)1=LE2+E[1——JJ (czh) 3)

E,

where E, and E; are the Young’s moduli of the adhesive layer and the substrate. Here the
factor Y reflects the changes in the stress intensity factor due to the perturbation of elastic
modulus within a strip of height of /. While the correction factor given by equation (8) has
been shown to be in good agreement with numerical solutions of the problem in the range
¢/h>1.0, it is easy to see that ¥, does not recover unity as ¢/A—0, the short crack limit. To
circumvent this problem, we will combine it with a simple interpolation formulas [13]
obtained for the limiting case of E\/E,—0, viz, a thin layer clamped at y =/,

i i h A
v, =(1-v?)"| —tanh— (E,/E,=0) )
g h

which recovers both the short crack limit (except the factor (I = vf)m, which reflects the
difference between clamped boundary versus shear free boundary) and a special long crack

limit (¢>>h) with f,—>eo, a crack contained in a thin strip which is clamped at the edges
[10,11].

Combining equations (8) and (9) would yield a new geometry factor for a crack in a
constrained layer,
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e 2)—Lﬁ E, mc = h E, J

where an additional parameter, 3, has been included to improve the correlation with the
exact solution of the integral equation. The comparison between the numerical solutions
and the above formulas is shown in Fig.2, where [ is given by

B =1+[1-(E /E,)" e ™" (A=0048) (1)

where A was obtained by curve-fitting the numerical results of the integral equation. It is
cvident from Fig.2 that this new formulas provides good approximation over the entire
range, including the short crack and the long crack limits with various modulus ratios.

A Strip Yield Model

From the forgoing analysis the stress intensity factor of a crack einbedded in a constrained
layer can be much lower than in a single material, due to the ‘shielding’ of stiff substrates.
In the case of small scale yielding, the plastic zone length can be easily evaluated using
standard fracture mechanics. The much lower stress intensity factor in the case of low
modulus layer means that the plastic zone length is also much smaller than that would exist
in a single material subjected to the same remote stresses. However, it has been found [13]
that outside the singular field the y-stress ahead the tip of a crack in a constrained layer is
much higher than that exists in a single material subjected to the same stress intensity
factor. A plateau in the y-stress has also been observed from finite element analysis [13].
The spread of plastic yielding can thus be rather ‘abrupt’ as this plateau region is crossed
over. Consequently the plastic zone could grow to an extent much greater than the layer
thickness, or the singular field [3,13]. In the following we will call this behaviour as large
scale yielding.

The length of the plastic zone under large scale yielding conditions can be determined by
superimposing the solutions of two elastic problems, as advocated by Dugdale [6]. This is
done by cancelling the stress intensity factor at the tip of a fictitious crack, which is
subjected to the remote applied load and a cohesive stress over a region near the crack tip.
The length over which the cohesive stress is required to cancel the stress intensity factor at
the end of this fictitious crack is the plastic zone length. This can be expressed as

K+K, =0 (12)

where K and K, are the stress intensity factors corresponding to a crack subjected to
uniform stress and a cohesive stress. In the present case, plastic yielding is assumed to be
contained in the adhesive layer while the substrates are assumed to remain elastic. For a
partially loaded crack that is subjected to a traction p(x) = =0, H(x —a), where H is the
Heaviside function, the right-hand side of the integral equation (4) becomes

, 0 1<
)‘J. *M—dx: nd

3 - =R <c
e 1o, COS . a<t<c

For a given crack of length «, the plastic zone length (r, =c—a) can be obtained by

(13)

searching for the value of ¢ which would satisfy equation (12). This would require an
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iteration procedure which involves solving the integral equation at each iteration.
Alternatively, if we can construct an approximate solution for a partially loaded crack, we
can establish a simple, closed-form solution of the plastic zone length. To this end, it is
proposed to combine the correction factor (10) with the well known stress intensity factor
of partially loaded crack in a single material,

K< —Z“O'.Aw/gcos"ﬁw)/(h/r,/J,/uz) (14)
O T (,'J A

where the first term in
the bracket represents e 1000
the solution of a = — -m Unconstrained
partially loaded crack in | e o=1.0 100
a single material. It 271

should be noted that 780 /
the crack length ¢ in the 0.1¢ 200 Z 10
correction factor Y has <
now been replaced by A4

the plastic zone length,

r,=c-a, as the cohesive
stress is only applied 0.001

over this length. / ol a=1.13

0.0001
The solutions of the 0.01 0.1 1

plastic zone length for
the plane stress and
plane strain conditions
are shown in Fig.3, 10
together with finite
element results to be
discussed later. The
cohesive stress O, is a

p
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factored yield stress to

reflect the influence of
the triaxial stress state
on the plastic yielding
of a constrained layer
[13], ie.,0, =00,
Here oy denotes the
uniaxial yield stress of
the layer material and o
refers to the plastic olo

constraint factor. Under ) :
plane stress and plane Fig.3 Lengths of plastic zone at various stress levels under (a)

strain conditions. it has plane stress and (b) plane strain conditions. Symbols: finite
been found that [13] element results. Solid lines: theory.
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crack tip
Fig.4 Finite element mesh near crack tip
3/+/7 plane stress
={ i ; (v, =033) (15)
2.0  palne strain

which are used respectively in computing the theoretical predictions. The finite element
model of the problem was developed using a general purpose code (PAFEC) [14], and the
mesh near the crack tip region is shown in Fig.4. The adhesive was assumed to be elastic-

perfectly plastic and associated plasticity theories were used with the von Mises yield
criterion.

With the case of single material crack as a base reference, the problem of a crack
embedded in a thin layer which is sandwiched between two elastic substrates can be
divided into two categories: the elastic modulus of the layer (E;) being less than or greater
than that of the substrate (E3). In the extreme of the latter category, such as two pieces of
ceramic plates bonded with a metal foil, the elastic deformation of the foil is almost
negligible, thus the layer representing an incompressible solid. When compressed between
two elastic substrates, the metal foil would behave rather like a rigid-plastic material,
developing a high hydrostatic stress ahead of the crack tip, which can increase indefinitely
with the applied load [4,5]. In the present case, however, as the adhesive layer has a
modulus much lower than those of the substrates, the hydrostatic stress arising from the
constrained yielding is far less pronounced than in the case of metal foil. In fact, the
maximum hydrostatic stress has been found not to exceed three times of the uniaxial yield
stress of the material, even under plane strain condition, before the entire adhesive layer
yields. Nevertheless, the analysis presented here should also be applicable to the latter

category. Further work is in progress to develop a strip yield model which incorporates the
effect of hydrostatic stresses.

Conclusions

The spread of plastic yielding of a crack embedded in a constrained layer has been analysed
using integral transform technique. An approximate solution has also been obtained, which
is shown to be in close agreement with the finite element results. The transition from small
scale yielding and to large scale yielding normally occurs at a plastic zone length to layer
thickness much less than unity. The smaller the ratio between the Young’s moduli of the
adhesive and substrate, the sharper the transition from small scale yielding to large scale
yielding.
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