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ABSTRACT

The non-linear character of defect interaction in high-strength nonhomogeneous
materials, gives rise to instability and localisation leading to stochasticity, which is
typical of the behaviour of essentially nonequilibrium systems. The instability involving
localization is known to be fractal in nature. This suggests that fractal analysis of the
system behaviour should be correlated with the non-linear kinetics of the growing defect
ensembles. In effect, an attempt has been made unify approaches from fracture
mechanics and damage mechanics.
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I. STATISTICAL MODEL

The existence of different types of microcracks and diverse mechanisms of their
generation and development requires adequate choice of parameters characterizing the
microcracks. The parameters determining the volume concentration and the preferential
orientation of the microcracks may be represented by the symmetric tensor

ol :n<s,k>,where n is the number of microcracks per unit volume (Naimark et al.,
1991). The tensor s, characterizes the volume and orientation of the disk-shaped
microcracks with the base S, = S,V and vector of the displacement jump (normai to the

base) in transition from one face to another b =bVv. The volume of microcrack is
s = Sps,, . Barenblatt and Botvina (1983) described the process of damage accumulation
assuming self-similarity of microcrack distributions at various damage stages. The self-
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similarity allows us to take into consideration average dimensions of defects and their
energy characteristics. The potential energy of microcracks may be calculated as
(Naimark, 1992)

E=E, = H.s, +as,, M
where E is a term depending on p,, H, =yo, +Ap, is the effective (mean) force
field acting on the microcrack, o, is the macroscopic stress tensor, and ¢, A and y are
material parameters. The form of H, reflects the fact that reconstructions of the
material structure are determined by the level of the local stresses, which may differ
considerably from the macroscopic ones. The term Ap, describes the force action, which

causes defect growth in the overstressed fields from the adjacent defects. It is to be noted
that a solid with defects is a non-linear system which is far from equilibrium. By analogy

with such systems one may conclude that p, plays the part of the order parameter. For
this case, the distribution function of defects with respect to their sizes and orientations
was taken as W =2 exp(— E/Q), where Z is a normalizing parameter and Q is the
fluctuating force intensity determined by the potential relief of the initial or induced (by
the deformation processes) structure. Averaging S, with the distribution function W,

we obtain the self-consistency equation for p,

p. =n[s,Z" exp(— E/Q)dsd’V, 2
where Z = jexp(— E/Q)dsdlf/. Equation (2) is the constitutive equation of the quasi-
brittle behaviour of the medium with microcracks when there is preferential growth of
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Fig.1. Characteristic responses of solid on the microcrack growth.

of the mean size of defects at a constant number of the latter n (Naimark et'al., 1984).
An analysis of (2) for the case of uni-axial loading has shown that depending on the

value of the dimensionless parameter & = Za/ﬂn there are three responses of material to

the defect growth (Fig.1): monotonous (5>5,), metastable (5¢<5<5,) and
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unstable (5<5C). The value of § is determined by the natural scale of structural
heterogeneity and the correlation radius of fields of overstress from microcracks. In the
case of monotonous response & > ¢J,, which is characteristic of fine-grained materials,
the applied stress corresponds to the constant value of microcrack concentration. In the
case of metastable response (55 <o < 5*) P, experieces a step change in the metastable
region which is accompanied by ordering of the defect system. The unstable response
(§<§C) is characteristic of coarse-grained materials, which initially contain large
nuclei of microcracks. The stress scale in this case is divided into two regions: the

metastable region (O'< o’f) when p, tends to infinity in the presence of structural

disturbances, and the region of absolute instability (O’ > O'/) which allows the existence
of large defects.

2. NON-LINEAR KINETICS OF THE MICROCRACK ACCUMULATION.

From the analysis of a microcrack system as a statistical ensemble, it is readily seen that
the transition from disperse to macroscopic fracture takes place under conditions of non-
equilibrium (kinetic) transition, when microcrack growth is governed by the non-linear
character of microcrack interaction. In the analysis of the nonequilibrium situation, the
part of of curve 3 in Fig.1 describes the thermodynamic branch of the system evolution

that controls the behaviour of the defect ensemble until a certain stress level is reached.
Outside of this region (O' > O’[) the kinetics of growing defects becomes unstable and

may lead to infinite microcrack growth and spatial organization effects. When analyzing
the regularities of transition from disperse microcrack accumulation to the formation of
macrocrack centers in the damaged medium, it is essential to take into consideration the
spatially nonhomogeneous microcrack distribution. The continuum problem of quasi-
brittle fracture includes a kinetic equation for tensor pix (Naimark and Davydova, 1993;
Naimark et al., 1984)

ap; 1 ¢ o op;
_;*ﬂf_:__ 4L p__l_k_) 3)

Tp'é)pjk o\ &kl

and a constitutive equation of elastic medium with microcracks
uik = Cikimoik * WPk )
where 7 is characteristic time, © is a parameter of nonlocality, ‘¥is the free energy of

material with defects, and u, and C,, are the strain and elastic compliance tensors.

It was shown by Naimark and Davydova (1994) that there are several types of self-
similar solutions, corresponding to a localized infinite growth of p, over a range of

constant or "growing" space scales. This situation is typical for solids in case of initiation
of stabilizing or extending fracture centers. The evolution of dissipative structures for
equation (3) is described by the self-similar solution (Kurdumov, 1988; Samarskii, 1984)

px)=g(0)f(s) ¢=x/4(0), ©)
where g(l)governs the growth law of parameter pand ¢(I)deﬁnes variations over the
half-width of localization region. From equation (5) it follows that the time dependence
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of p remains self-similar, i.e. it just extends along the x and p-axes. Substitution of

(5) into equation (3) allows us to clarify the form of the function g(l)

N
g(z)—G(l—T—j , (©6)

e

where 7_is the so-called "peak time" (p-—>c0 at -7, (Kurdumov, 1988));
G >0,m > 0 are the parameters of nonlinearity that characterize the rate of free energy
release A¥/p with an increase in the volume fraction of microcracks in the region
PP (5 <5c). Concurrently, an eigenvalue problem is formulated for the
eigenfunction f(g) Its solution gives the spectrum of eigenforms fi(g)”living” during
time 7. in the discrete ranges of eigenvalues ¢, specifying the damage localization

scales. The solution (5) refers to the class of nonlinear singular solutions that describe
infinite growth of p(l) over localization scale ¢, (Kurdumov, 1988)at [ — 7 _.

The high-strength nonhomogeneous materials with multiple interacting microcracks are
dissipative systems, the behaviour of which changes from a regular to a random one at
small variations of certain parameters. This phenomenon is caused by local instabilities

of p, beyond the thermodynamic branch of p(O') relation for & <J,. Local

instabilities in ensemble of defects are accompanied by alteration of the topological
properties of the system. It is interesting that the same form of the relation (curve 3,
Fig.1.) between the scalar measure of damage P and stress was proposed by Bolotin
(1984)

P =r,(g(o.P)) Q)
where

F,[g(a,P)] =1- exp[—(g(cr,P)/rc)a] ®)
is the Weibull distribution function of the short-time strength, g(o‘,])) is the real stress
in the structural elements, r, = /‘:(VX/VC)W is a characteristic strength of the structural
elements, 7, is the strength of the specimen, and & is the Weibull modulus. Assuming

g(O',P) = O'exp(ﬂ, P), we obtain a concrete form of equation (7)
P =(o/r, exp(BP)) ©)

where f is the parameter controlling the effective stress growth under damage
accumulation. The relation such as equation (9) follows from (2) for the equilibrium

a
2

condition of elastic medium with microcracks = 0. Phenomenological analog of
/2

expression (3) appears from the above

p:,L P—[gexp(ﬂ]’)) (10)
T, 7
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3. FRACTALITY AND DAMAGE LOCALIZATION

The regularities of transitions from damage to fracture were examined numerically for
curbon-carbon composites. Tensile loading tests of carbon-carbon specimens
demonstrate characteristic features of deformation and fracture: the presence of
microcracks in the bulk of the specimen; the influence of microcracking on the
deformation behaviour of materials; fragmentation of the specimen across the regions
subject to damage and highly statistical scattering of the specimen strength (Fig. 2). For
the case of uni-axial tension only the component p_ of the tensor Py 1s sufficient to

characterize the microcrack accumulation process.

o, MPa
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calculation
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Fig. 2. Typical deformation curves of the carbon-carbon specimens.

The problem of quasi-brittle fracture of the carbon-carbon composite has been solved
numerically (Naimark and Davydova, 1993; Naimark and Dvydova, 1994) by the

Table 1. Statistics of tensile test measurements

N dispersion characteristic strength Weibull modulus
series s, MPa o
1 360 79 4
2 130 83 8
3 45 88 16
4 25 7 17
5 43 117 20
6 19 81 23
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finite element method based on the equilibrium equation do, /8 x, = 0 (k = 1,2), the
consti-tutive equation of elastic medium with microcracks (4), the kinetic equation of
damage accumulation (10), and boundary condition and initial conditions.
Phenomenological parameters (a,ﬂ,rc) were determined from the results of statistical

analysis (Table 1, Fig. 2, Fig. 3) of tensile test measurements on carbon-carbon
composite specimens (Fig. 2). Simulation of the deformation and fracture processes
starts with random assignment of (according to Table 1 and Fig.3) the strength 7, and
Weibull modulus & to each element of the finite element approximation. At every step
of the time we calculate a new value of the elastic modulus taking into account the
influence of microcrack accumulation, and solve the elasticity problem and define the

value of parameter p . The element is broken, when p  — reaches the critical value p,

(p, =3-107" is an experimental estimate). The macroscopic fracture corresponds to the

formation of a percolation cluster that consists of fractured elements. The final step of
fracture simulation is the fractal analysis of the percolation cluster. The cluster appears

F(o) 1 Firg) 1
1
1
o =16
l’s=87.7 MPa r; =88 MPa
G, MPa ry, MPa
a) b)

Fig. 3. Distribution function of the specimen strength for one series (a); distribution
function of characteristic strength for aii series (b).

to be fractal in nature and with an increase of linear dimension L of the damaged array
(Feder, 1988) its mass M (the number of failured elements) increases on the average as:

M(L)=ALP an
where D is the fractal dimension, A is the effective amplitude. The mean value of 4
is obtained by averaging over the manifold realization of the percolation cluster. This
approach was used to simulate failure development in carbon-carbon specimens with an
initial macroscopic defect located in the center (the macrocrack is normal to the tension

direction) with characteristic size /N, (Fig. 4). The dependence M(L) consists of two
linear parts with the slopes determined by the fractal dimension D . Simulation of
damage has demonstrated that under loading the initial stage is accompanied by
preferential failure of elements located in the vicinity of the macroscopic defect
(D =1). The percolation cluster across the specimen results from coalescence of the
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Fig. 4. Topological characteristics (fractal dimensions) of the damage cluster growth.

cluster originating from the initial macrodefect with clusters in its immediate
neighbourhood (D= 14 —17). This is indicative of the qualitative change in the
topology of damage accumulation process and the fracture mechanism replacement. The

fractal dimension D =1 supports the validity of approaches of fracture mechanics only
at the initial stage of crack evolution.

D~1.4~+1.7
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Fig.5. Dependence of critical concentration of failed elements X, on initial macrodefect size V.

The results of statistical simulation for the time of complete formation of the main
cluster are plotted in Fig. 5. This dependence involves two parts with two asymptotics

Xx"and x:. The right part corresponds to the formation of branched cluster with the
fractal dimension D =14 —17. The transient region between these parts defines the
critical size N of the initial defect, which specifies two qualitatively different
mechanisms of fracture according to the size of initial defects. It means that the highest
reliability of materials is reached when the size of initial defect is not larger than N_ . In
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this case, the material exhibits the maximum of "dissipative capacity" and the damage
accumulation in the specimen is more homogeneous.

A fracture zone formation is connected with the nucleation of localized damage zones in
the form of dissipative structures which are developed in a peak regime. This is
accompanied by the generation of simple and complex structures of the localized failure
and it reflects the self-similarity of damage development at various scale levels.
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