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ABSTRACT

The problem of modeling of some of the specific effects of brittle fracture in the high
loading rate conditions is discussed. An approach based on the system of fixed material
constants describing macro-strength properties of the material is considered. New
principles of material testing are analyzed. The corresponding incubation time criterion
allows one to manage without the a priori given rate dependencies of dynamic strength
and fracture toughness. New applications of the criterion to the problems of erosion and
asymmetric impact loading are considered.
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BASIC PARAMETERS OF STRUCTURAL FRACTURE MECHANICS

One of the principal parameters of linear fracture mechanics is the material structure size d
describing the elementary cell of failure. The classical approaches by Griffith and Irwin
consider this characteristic as a latent quality. It may be presented as dimensional
combinations of surface energy, the critical stress intensity factor, static strength and
elastic constants of the material:
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The elementary cell of fracture has no unique physical interpretation. It may be interpreted
in various ways, depending on the class of problems.

Neuber (1937) and Novozhilov (1969) suggested considering the material structure
directly. The corresponding criterion requires that the mean normal stress in the range of
material structure size d must be equal to the static strength of the material. In the plane
deformation state case we have:
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A§s_uming that in the simplest cases the criterion (2) gives the same results as the Irwin’s
critical stress intensity factor criterion, we obtain for the material structure size d the
expression:
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Criterion (2) may be used in various cases in which the square root singularity and the

appropriate energy balance do not work. Results obtained by means of the criterion (2)
under the condition (3) are well confirmed by experiments in static cases (Morozov,1984).

Analysis of the dynamic experiments shows that the main contradictions of the traditional
mod.els appear when failure occurs during the short time intervals after the start of the
loading process. Morozov and Petrov (1990) proposed an approach to the analysis of
dynamic brittle failure based on the incubation time criterion:
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Here d and 7 are material structure size and structure time of failure respectively, o, is
static strength of the material, (7, §) are polar coordinates, o, 6, #) is tensile stress at the
crack tip (#=0). The material structure size d is to be determined in accordance with the
data of quasi-static tests of specimens containing cracks and in the case of plane strain it
may be expressed by the simple formula (3). The material structure time z is responsible
for the dynamic peculiarities of the macro-fracture process and for each material it should
be found from experiments. In accordance with this approach, o, K ,, and 7 constitute
the system of fixed material constants describing macro-strength properties of the
material. Petrov (1991) has shown that the criterion (4) reflects the discrete nature of
dynamic fracture of brittle solids.

In the case of virgin materials, the criterion (4) reduces to the form:
i o(1Ydt's o
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This form will be used later for the analysis one of the particular problems.

The analysis of the particular problems of dynamic fracture mechanics is associated with
the appropriate choice of the parameter 7. We shall mention two basic cases:

a) The incubation time is defined by the material structure size of fracture:
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where ¢ is the maximum wave velocity, p is the density of continuum, & is the constant
depending on the deformation material properties. According to this definition, the
incubation time has a physical meaning of the minimum time period required for the
interaction between two neighboring material structure cells. Morozov et al. (1990) have
shown that the definition (6) provides a good analogy between the incubation time
criterion and the well-known experiments in the case of “defectless” materials.

b) The incubation time does not directly depend on the material structure size of failure.
This takes place when a problem of initiation of the macro-crack growth is considered.
Petrov and Morozov (1994) proved that in the case of macro-cracks, the material
structure time 7 can be interpreted as an incubation time in the well-known minimum time
criterion proposed and explored by Kalthoff and Shockey (1977), Homma et al. (1983),
and Shockey et al. (1986):
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The aforementioned dependence of the fracture toughness on the loading history (Ravi-
Chandar and Knauss, 1984) and the specific behavior of the short loading pulse threshold
amplitudes can be explained and effectively analyzed by means of the incubation time
criterion under the condition (7) (Petrov and Morozov, 1994).

PRINCIPLES OF THE MATERIAL STRENGTH PROPERTIES TESTING

In this section we outline some of the possible methods of description of the material
strength properties. Table 1 represents the basic parameters and criteria to be used in
testing of the materials. In Table 1 o_,K, are the material constants,
o, ¥"(v), K,,(v) are the material functions that represent the dependencies of
critical characteristics on the loading rate v.

The. classical dynamics approach, resulting directly from the static strength theory and

; N gt d
linear fracture mechanics, is based on two strength characteristics o, " (v), K ,,(v),
that are supposed to be material functions found from experiments.

Table 1
No. | Method Material parameters Criteria
1 Classic static g K., o<o, K, 2K,
5 d
2 Classw. o, " (v), K, (v) o(t)<o”, K,t1)< K,
dynamics
3 SRI o, "(v), K, (v), t,.| o) <o, minimum time
International criterion
4 Incubation o, K, © Incubation time criterion
time approach
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The minimum time theory proposed by J.F. Kalthoff, D.A. Shockey and co-workers is
based on the incubation time notion. It allows us to explain some of the principal dynamic
fracture effects. On the other hand, the minimum time technique turns out to be too
sophisticated for practical engineering.

It is seen from the Table 1 and the aforementioned results that the incubation time
criterion combines the simplicity of the classical static method with the effectiveness of the
SRI International approach. Basing on the system of fixed material constants, it enables us
to predict the behavior of dynamic strength and dynamic fracture toughness from a unified
viewpoint. Thus, the rate strength dependencies may be considered as calculated

characteristics. The criterion may be applied for both the “defectless” and macro-cracked
specimens.

APPLICATION TO THE PROBLEM OF EROSION

The solid particle impact velocity at the beginning of target material loss in the steady state
erosion process can be considered as a critical or threshold velocity. In this section, the
relation between the threshold velocity W and the incubation time t is investigated. The
possibility of using the incubation time criterion in determining the threshold erosion
characteristics is established.

One of the principal features of the erosion process is that the target material surface is
subjected to extremely short impact actions. The incubation time criterion (5) is an
effective instrument for the analysis of this process. Here we shall consider the simplest
way to obtain some of the basic threshold erosion characteristics.

Let a spherical particle of radius R fall with velocity v on the surface of an elastic half-
space. Using the classical Hertz impact theory approximation (Kolesnikov and Morozov,
1989), we describe the motion of the particle by the following equation:
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At the beginning of the impact event we have dh/dr=v. The maximum penetration h,
occurs when dh/dt=0. Solving the equation (8), we obtain
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where 2, is the duration of the impact event. The penetration function A(#) can be
approximated by the simple formula (Kolesnikov and Morozov, 1989):
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(t) = hy sin(z 1/1,) (11)

The maximum tensile stress occurring at the edge of the contact area is given by the
expression (Lawn and Wilshaw, 1975):

1-2v P(t,v,R)
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o(t,v,R) = a(t,v,R) =|:3P(t,v, R)(1- VZ)E] (12)

where the contact force P(%,v,R) can be found by means of Eqs.(9)-(11).

Let v=W denote the threshold velocity corresponding to the beginning of failure. We
consider the function:

f(f,V,R):maxJ‘: ol{s.v;R)ds— .7 (13)
t -7

According to (5), we determine the threshold velocity v=W as the minimum positive root
of the equation:

Hzv.R)=0 (14)
where 7 is the incubation time for the target material.

The corresponding calculations were performed for the aluminum alloy B95 and the
incubation time was  determined according to  formulae  (3), (6):
0. = 460MPa, K, =3TMPaJm, c =6500m /s, = =2K,"/(zo’c)=06us. The
calculated dependence of the threshold velocity # on the value of radius R is presented in
the Fig.1 by the solid curve. The static branch shows a weak dependence of the .threshold
velocity on the value of radius. On the contrary, the dynamic branch, corresponding to .the
small particles and very short loading pulses, represents a strong depende.nce. of the Cﬂthfil
velocity on the radius of particles. This behavior of the threshold velocity is obs'erved in
numerous experiments (Polezhaev, 1986), but it can not be explained on the basis o.f .the
traditional fracture mechanics. The dependence following from the conventional critical
stress theory is also presented in Fig.1 by a dashed line.

FRACTURE AT THE CRACK TIP DUE TO ASYMMETRIC IMPACT LOADING

The incubation time criterion (4) provides an effective way of determination of the
direction of failure in crack containing materials. The corresponding example can be given
with respect to the shear band paradox (Kalthoff and Winkler, 1987, Lee and .Freunfl,
1990). The particular boundary value problem to be analyzed is shown schematically in
Fig.2. It can be described analytically by the following equations:
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o, (-l,y,t) =0, c,(=1,y,t)=0, y <O

u (=Ly,0) = [vande, o (-1,y,0)=0, y>o0
o,(x,x0,t) =0, G (x,£0,1) =0, x <0

Here ¢, y and a, b are longitudinal and shear displacement potentials and inverse waves
speeds respectively; 4, u and p are the Lame constants and the mass density; v(?) is the
loading velocity prescribed for non-negative values of its argument 7. In our particular case
we shall consider v(#)=VH(1), where H(?) is a Heaviside step function. The boundary value
conditions are expressed in terms of the stress components.

The corresponding asymptotic solution for the stress components at the crack tip is given
by the expression:
K@) cu K
e i(0) + === fI,(0) + c®(r,9,1) + O@('?),r - 0 (16
mfj()mf;()q( )+ 0(r'’?) (16)
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Here (7, ) are polar coordinates at the crack tip. The asymptotic solution we are going to
use for the analysis consists of both singular and regular parts. To determine the direction
of crack propagation, we have to apply a criterion of fracture that is irrespective to the
presence of singularity. The incubation time criterion provides us such opportunity.

To determine the direction of crack propagation we shall calculate time to fracture £, on
each line extended at the angle 6 (—7 /2 <9 < x /2) from the crack tip. We assume that
the crack grows in a direction 6 for which time to fracture is minimum.

The singular part of the asymptotic solution was analyzed by Lee and Freund (1990). The
corresponding expressions for the stress intensity factors in this particular problem can be
taken from their paper. Combining it with the regular terms of the asymptotic (16) and
using the criterion (4) we receive the following.

(a) At low loading velocity the crack does not propagate.

(b) When loading velocity exceeds the certain value, a failure is observed that in general
corresponds to the fracture in quasi static pure mode-II conditions. In this instance, the
crack catastrophically propagates at the angle around -78 deg with respect to the ligament,
and its instability can be effectively predicted by the classical fracture mechanics (Lee and
Freund, 1990).

(c) The further increase of loading velocity leads to. the specific dynamic effect. The
regular part of the asymptotic solution is very important for the early time range of the
impact event, as the corresponding transient wave, produced by the impact, bears a
tension that arises faster than the stress intensity factors. Thus, when loading velocity is
big enough the crack propagates in a direction that is controlled by both parts of the

Fig.1.
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Dependence of the threshold velocity W (m/s) on the value of radius R (m) of
The dependence

erodent particles calculated for aluminium alloy B95.
corresponding to the classical fracture criterion is plotted by dashed line.
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Fig.2. Asymmetric impact loading problem
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asymptotic solution. It turned out to be approximately equal to +4 deg. This was observed
in the experiments by Kalthoff and Winkler (1987).

Therefore, the analysis has shown that the regular terms of the stress field asymptotic at
the crack tip may be essential for a prediction of the specific failure behavior in dynamic.
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