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ABSTRACT

The goals of dynamic crack theory are discussed. Some important results for elastodynamic
crack problems are briefly reviewed as well as some aspects of the elastic description of
dynamic crack growth. Extensions of the elastic theory in form of visco-plastic, damage and
cohesive zone modelling are discussed. As an example of possible applications of dynamic
crack growth theory to micro-mechanics a particular problem with reference to cleavage frac-
ture initiation is stated.
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INTRODUCTION

The problem of how to understand dynamic crack propagation has over the years provided a
challenge to researchers and practising engineers. The scientific approach to the problem area
can be said to have started with the contribution by Mott (1948) who recognized the impor-
tance of accounting for the kinetic energy when analysing dynamic crack propagation.
Numerous contributions to the subject have since appeared and the most comprehensive
account up to date is the book by Freund (1990).

The general goals of dynamic crack growth theory are fairly easy to state. In a given geometry
with a given initial crack the aim is to predict the time history of the crack growth after an ini-
tiation and in particular if the growth is arrested. The applications are mainly to situations
where a complete failure may have very serious consequences and relying upon safety of
crack growth initiation is not enough. Thus, engineering interest in the crack propagation and
arrest problems has mainly been driven by the safety needs of certain branches of industry for
instance the nuclear power industry. In the recent years other areas of application have
emerged. It has for instance been recognized that crack growth arrest plays a crucial role for
the initiation of cleavage fracture in ferritic steels. This is discussed somewhat further in this
article. Other micromechanical applications are likely to appear in the near future.

SOME RESULTS FROM LINEAR ELASTIC CRACK GROWTH DYNAMICS
A substantial body of knowledge has been developed for dynamic crack growth in linearly
elastic isotropic bodies. Specializing to the mode I case, the stress field in the vicinity of a

dynamically growing crack admits the following representation
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Here r and ¢ denote polar coordinates
(Fig.1) measured from the crack tip y Ar
which is moving with the velocity a,
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angle functions. The stress intensity
factor K and the constant stress term

Fig. 1. Crack tip notation

T depend on the solution of the entire problem. Explicit expressions exist for the r'? term
(Freund, 1990; Freund and Rosakis, 1992; Nishioka, 1995) but these are too complicated to be
shown here. The fully extended forms can be found explicitly in Nishioka (1995). The angle
functions corresponding to this term depend both on the crack acceleration and the time deriv-
ative of the stress intensity factor in addition to the dependence of the crack velocity.

Dynamic crack problems are difficult to solve and there are few analytical results with general
applicability. One is the relation between the energy transport to the crack tip and the stress
intensity factor (¢f. Freund, 1990). Since this unique relation exists there is no particular rea-
son to consider crack growth in linear elastic materials in terms of the energy balance since the
stress intensity factor approach is completely equivalent.

The most general result

for the stress intensity A
factor for  dynamic

growth under plane mode

I conditions is probably = = m m = m o o Sy .
the following one, which Jjﬁi
can be deduced from o pox, 1)
works by Kostrov (1975) i a(t)

and Burridge (1976). i

Consider a crack grow-
ing in an arbitrary body
under arbitrary symmetric dynamic loads. Imagine that the crack stops (see Fig. 2) at a point
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Fig. 2. A stopping and further propagating crack.

x = 0 along its path at the time # = 0 and that pSt(x, t) is the normal stress that if this were
to happen would act in the plane ahead of the tip. If instead of stopping the crack continues to
propagate the stress intensity factor for the subsequent growth is for a limited time interval
given by the expression
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g(x, 1) is a complex function given by Burridge (1976) and its particular form is not needed
here. fr(a) is a velocity dependent function first derived by Freund (1972a) and Cyr denotes

the velocity of Rayleigh surface waves. From eq. (2) a number of interesting results follow.
Given the state at a certain time instant, say t;, Ky will during a forward time interval not

depend on the actual motion except for the tip position and speed. This time interval ends
when a wave emitted from the tip at ¢; overtakes tip again after have being reflected at some

boundary. Thus for instance the stress intensity factors before and after, respectively, a discon-

tinous velocity jump from d” to 4 are related as

Kifula) = Kifpta). )

This result can be used directly to determine a condition for arrest at an interface in a structure
where the crack growth properties change discontinuously but the elastic properties remain
continuous.

If the state at 7 = O is quasi-static, eq. (2) reduces to the celebrated result by Freund (1972b)
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It is to be noted that for a finite body the integral in (5) is not in general related to the quasi-
static stress intensity factor.

In recent years significant steps have been taken towards an analytical understanding of three-
dimensional elastodynamic crack growth problems (cf. Willis and Movchan, 1995; Geubelle
and Rice, 1995). Such solutions for obvious reasons exhibit even greater complexity than the
two-dimensional ones. Their value lies mainly in that they can form a basis for efficient
numerical treatment. In fact even for two-dimensional problems the analytical solutions them-
selves are of limited value for practical situations and one must resort to numerical methods.

Other extensions of the simple isotropic linearly elastic theory have emerged during the last
decades. The interest in polymeric composite materials which are inherently anisotropic has
inspired research of dynamic crack growth in anisotropic elastic materials. The development
is very similar to that of the isotropic theory although for obvious reasons considerably more
complex. In contrast crack growth along an interface between two different elastic materials
exhibits new features compared to the homogenous case. Most notable is the existence of a
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complex crack tip singularity which complicates the question of suitable crack growth criteria.
Consideration of such cases is hovewer outside the scope of the present article.

CRACK PROPAGATION CHARACTERIZATION USING LINEAR ELASTIC ISOTROPIC
THEORY

The most commonly used assumption for description of crack growth in isotropic linear elas-
tic solids is that the crack velocity depends only on the stress intensity factor and thus that

K1) = K, .(a), during growth, 6)

where the quantity in the right hand side (here termed the crack propagation toughness)
depends only on the material. Deviations from this simple assumption have been observed in
many experimental investigations (Dahlberg et al., 1980, Ravi-Chandar and Knauss, 1982,
among others) and there is in fact fairly little experimental support for the assumption implied
by eq. (6). Different explanations for the deviations from this simple description have been
advanced. Freund and Rosakis (1992) for instance attribute the loss of uniqueness to the influ-
ence of higher order terms in eq. (1). If the region where the material behaviour differs from
that of an elastic material is larger than the singularity dominated zone, these terms might be
expected to influence the crack growth processes. In addition the analyses by among others
Freund and Rosakis (1992) and Nishioka (1995) show that crack acceleration and time deriva-
tives of the stress intensity factor influence the form of the stress field for terms of order 1/2
and higher, so that such quantities may also affect the crack growth behaviour.

The other main group of attempts to explain deviations from eq. (6) is to analyse the crack
growth with more elaborate (non-linear) constitutive models. Thus, for instance Brickstad
(1983) applied elastic visco-plastic constitutive modelling of the Perzyna type to analyse
experiments performed on thin plate specimens of a high strength steel. The adoption of this
visco-plastic model has the advantage of resulting in a linearly elastic tip singularity and thus
a non-zero uniquely defined energy flow to the tip. Brickstad was able to correlate the thus
obtained energy flow to form a reasonable unique function of the crack velocity, while purely
elastic analyses gave substantial deviations from eq. (6).

In a sense the two different approaches, multi-parameter elastic modelling or non-linear mod-
elling, are but two different routes to achieve the same thing. In both cases it is the non-elastic
deformation in the crack tip vicinity that requires an extension of eq. (6). When higher order
terms of the elastic solution are used this implies that more detailed information about the
field surrounding the non-elastic zone is utilized. Modelling of the non-elastic zone is avoided
at the expense of keeping more parameters in the crack grow condition. In contrast it may be
possible by more elaborate constitutive modelling to avoid including many parameters into the
crack growth condition. It is however well known from quasi static fracture mechanics that
elastic-plastic modelling is not necessarily sufficient to maintain a one parameter criterion but
auxiliary parameters (for instance the so called Q-stress) may be needed. Thus it can be con-
cluded that more complicated constitutive modelling should at least potentially reduce the
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number of parameters in the crack growth criterion. This is of great practical importance. The
need to keep track of many parameters in a criterion complicates experimental work tremen-
dously. In the present author’s opinion this aspect is highly in favour of using more complex
constitutive modelling and this is to be discussed in subsequent sections.

VISCO-PLASTIC MODELLING OF CRACK GROWTH

Parallelling the development in quasi-static fracture mechanics, the linearly elastic theory has
been extended by‘incorporating plastic deformation. Since such deformation is clearly rate
dependent in many materials it was early realized that so called visco-plastic theories were
possible alternatives. Especially popular is the following constitutive theory due to Perzyna
(1963).
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Here, H denotes the Heaviside step function, ef; ) is the elastic strain rate and A a fluidity

material parameter. o, is the effective stress according to the von Mises yield condition, eip ;
the associated effective plastic strain, s;; the stress deviator and m a material constant. The

hardening behaviour is given by the dependence of the flow stress ¢  on the effective plastic

strain. For very slow deformation eq. (7) reduces to conventional plastic theory. For the very
(infinite) high strain rates in the vicinity of the crack tip the constitutive equation (7) has the
property that if

3
m<r. ®

the crack tip singularity will be identical the elastic one in eq (1). The parameter # is here the
exponent in a power law relationship for the quasi-static behaviour i.e.

o poc PN )

The property that follows if eq. (8) is satisfied has the advantage that there is no ambiguity in
the crack growth criterion. An equation of the same form as €q. (6) can be used where K()

now is the strength parameter related to the inner elastic singularity. As mentioned previously
Brickstad (1983) was successful in applying these concepts to experimental results. Later ana-
lytical and numerical studies (for instance Ostlund, 1990, 1991) have however revealed that
the spatial extent of the inner elastic singularity may be extremely small and in many cases it
is doubtful if it is even comparable in size to the process region. Still, Brickstad’s results were
encouraging and it may well be that his visco-plastic analysis was not particularly accurate in
the near vicinity of the crack tip. It may, however, have been reasonably accurate at some dis-
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tance from the tip so that all important information about the state in rest of the body is con-
tained in the near tip solution. Then it does not really matter which kind of singularity which
arises as a consequence of the particular constitutive assumption provided that its structure is
known and that its strength can be evaluated with sufficient accuracy.

There are fairly few experimental investigations, if any, that have been evaluated as systemati-
cally and successfully as Brickstad’s. Perhaps the most ambitious experimental programme
carried out to study dynamic crack growth is the wide plate test program (cf. Naus et al.,
1987). Here, crack propagation and arrest experiments were carried out on very large single
edged notched specimens subjected to tensile loading and a thermal gradient along the pro-
spective crack path. Several attempts including visco-plastic modelling of the previously
described nature have been made in order to understand the experimental outcome, but no
common view is yet in existence.

DAMAGE MECHANICS MODELLING

A strong trend in quasi-static as well as in dynamic fracture mechanics is to employ so called
damage mechanics constitutive models in order to better simulate the behaviour at growing
crack tips. A recent example of suchi calculations is the article by Mathur et al. (1996) where a

- three dimensional analysis of dynamic ductile crack growth in a thin plate is performed. Such
analyses are nowadays capable of capturing at least qualitatively many features of observed
crack growth processes. The analysis in the cited érticle and similar ones can for instance be
regarded as extensions of the visco-plastic modelling discussed above. The extension is
mainly that the decohesive processes are more explicitly taken into account by introduction of
softening behaviour through the damage variable. Unfortunately the analyses are so complex
that it is difficult to discern the characteristic features. Analytical results are scarce and here a
very simple example of a complete solution using a type of damage formulation considered by
Bui and Ehrlacher (1981) is to be commented upon.

A semi infinite crack under anti-plane strain (mode IIT) conditions moves steadily along the x-
axis with a velocity d in an infinite medium. The boundary conditions at infinity are those of
the singular linearly elastic solution governed by the stress intensity factor Ky;;. The material

o v , : 20 DulA2 e
is linearly elastic as long as the effective stress Toi=iltF Ty) is less than a critical stress

7. and in this case the governing equation is well known i. e.

a2
(=(&] P am = 0

x’ and y’ here refer to a coordinate system attached to and moving with crack. When the crit-
ical stress is exceeded the material ceases to be load bearing and thus the boundary conditions
along the moving damage front surfaces become
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Fig. 3. Shape of the damage front.

tion for higher values of a/C, is different but possesses the same general features and is

therefore not shown. One puzzling feature of the solution of the governing equations is that
there is no difference whatsoever between the case of a stationary crack and the case of a crack
moving with a low velocity. The shape of the damage zone shown in Fig. 4 is reasonable for a
steadily moving crack but clearly not for a stationary crack loaded up to some level. An
attempt of interpretation is that as soon as load is applied, however small, that damage crite-
rion is reached and the crack starts to propagate. Thus models of the present type can not be
used to predict initiation of crack growth. It is further noted that there is no possibility to pre-
dict the crack growth velocity from the obtained solution. Some additional criterion is needed
and Bui and Ehrlacher (1981) suggested the height of the damage zone which in essence is
equivalent to specifying a characteristic material length.

The need to specify a critical material length seems to be common to all kinds of damage
mechanics modelling for description of crack growth. In many of these calculations this fact
has been overlooked and the material length that is specified becomes the characteristic size of
the near tip mesh. This is itself a viable procedure as long as the analyst is conscious of the
fact that the chosen element mesh is in fact part of the constitutive assumptions. The problem
is by no means unique to crack analysis. Exactly the same difficulties are encountered for
instance when analysing shear band development and does arise as soon as the material model
admits softening behaviour.

There are different alternatives to overcome this problem. Lately interest has focused towards
non-local constitutive models such as for instance strain gradient plasticity. In such models the
critical material length has to be specified already in the constitutive model and is thus

removed from the computational process. Another way is to model the internal material sizes ’

|
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explicitly by micro mechanical modelling. Both of these two alternatives probably require
huge computational efforts.

A simpler alternative which has been used for a long time and been revived in recent years is
to use cohesive zone modelling. In essence this is equivalent to restrict the softening behaviour
to a single line (surface in the three dimensional case) and replace the relation between
stresses and strains by a relation between traction and material separation. The critical length
is here introduced by specifying a force versus separation law.

AN EXAMPLE OF A POSSIBLE MICRO MECHANICAL APPLICATION OF DYNAMIC
CRACK GROWTH THEORY

In order to illustrate the possible use of crack growth theory to micromechanical applications
an example for initiation of cleavage fracture is stated below. It is fairly commonly accepted
that cleavage fracture in ferritic steels is mostly initiated from brittle inclusions such as car-
bides and sulphides. Such an inclusion may be irregularly formed and vary considerably
between different particles. When the stresses become large enough at a particular inclusion,
dynamic crack growth in the particle may be induced and a crack grows rapidly across the par-
ticle according to the sketch in Fig. 4. This is usually a very brittle process and the crack may
or may not penetrate into the surrounding matrix material. This is usually considerably
tougher than the inclusion material and it is possible that the crack may arrest after some
amount of growth: Should it not become arrested the crack may continue to grow and cause a
total cleavage fracture. Thus two requisites are thus needed for a complete failure to occur.
The crack growth must initiate and it must not be arrested. The first one is fairly difficult to
predict since it will depend on the details of the inclusion shape. The arrest question may be
more well defined and therefore more stable to analyse. We shall here not attempt to solve the
problem but rather discuss possible aspects that need to be taken into account.

First of all it has to be realized that the
real case is always fully three dimen-
sional. Qualitative understanding can
probably be achieved by two dimen-
sional modelling, either plane or axi-
symmetric: This is necessary since fully
three dimensional modelling is extreme-
ly complex and presumably not possible
to perform with contemporary numeri-
cal methods and computers.

The crack growth within the inclusion Fig. 4. A crack traversing an inclusion and propa-
can presumably be modelled by linear gating into the matrix.

theory according to eq. (6), while for
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the matrix material some non-linear model is needed, since in many occasions cleavage frac-
ture is preceded by plastic deformation. A possible choice could be the visco-plastic models
discussed above which have the advantage of a well known type of crack tip singularity. A par-
ticular obstacle to the analysis is the interface. Very little fundamental understanding exists
regarding rapid crack growth over a material interface where the stiffness properties are so dif-
ferent as say for a carbide inclusion in a ferritic matrix.

A considerable difficulty is to assign proper crack growth properties to the respective materi-
als. Thus for instance the crack propagation toughness obtained for a ferritic steel is necessar-
ily the appropriate one for analysis of the matrix material. A macroscopic crack propagation
experiment on a structural steel will for instance also depend the inclusions present in the
material.

What can be gained from a hopefully successful analysis of the stated problem? In addition to
a fuller understanding of cleavage fracture, at least partial answers to such important questions
as a macroscopic criterion for cleavage fracture can be obtained. It is commonly assumed that
cleavage fracture initiates if the maximum principal stress exceeds a critical value which in
itself is taken as a random variable. It is easily realized from consideration of the stated exam-
ple that other variables such as for instance the amount of plastic deformation and also stresses
in other directions may be of importance. The statistical aspects can also be taken a step fur-
ther and be coupled to the inclusion size and shape.
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