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ABSTRACT

An analysis of dynamic crack growth in loaded strips and beams is described which employs
the static displacement fields to compute the kinetic energy. This approximation yields
steady state solutions which are close to the crack growth histories observed experimentally.
However such steady states require finite crack velocities at initiation from finite crack length
and this cannot be achieved. There are thus induced oscillating variations in crack speed
which can be discerned in the experiments and are described by the analysis.
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INTRODUCTION

Characterising the toughness of composite laminates via fracture mechanics is now quite well
developed [eg 1, 2]. Tests for the determination of G, Gjje and mixed mode systems have
been widely studied and are reasonably well understood (some mysteries still surround mode
II tests however). In most of the mode I tests delaminations are propagated in a stable
manner at low speeds to determine G, as a function of crack growth, ie the 'R'’ curve.. The
tests are usually double cantilever beams in which,
2
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Gy = 24

where u,, is the load point displacement and a is the crack, or delamination length. If Gy
remains constant and the specimen is loaded at a constant rate V then

V22
T constant
a

and the crack growth history is of the form,
a= AVt
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where A isaconstantand d=—— ie the crack slows down during propagation.

24t

In general rather low loading speeds and hence low crack speeds are used, but it has been
recognised that many delaminations arise as impact damage and are thus rapid and that such
higher speeds would be more appropriate for characterisation. Experimentally such tests are
demanding but feasible, with loading rates of up to 25 m/s possible. Measurements are quite
difficult, but high speed cameras enable all the necessary information to be retrieved [3, 4].
However there remains an underlying problem in that the usual specimens are rather slender
beams and there are substantial dynamic effects. These have been studied [5, 6, 7] with a
view to correcting the data as necessary, but also to understanding the behaviour of such
structures when loaded rapidly. Exact solutions for such problems are rare, but it turns out
that a scheme based on static displacement fields, the Berry method [8, 9], and perturbation
analysis yields useful results [4,7]. These last references have explored the DCB test in detail
and it will be described here, but first it is useful to look at another configuration which gives
a rather simpler result.

THE AXIALLY LOADED STRIP

This simple configuration is shown in fig 1 and would be in mode II. It was analysed in some
detail elsewhere [2, 10] where it was shown that the static G is given by,

2
e B 2

and that the solution is the same for the torsion loaded strip [10] for which E is replaced by

1

2
5 (—5) I, pis the shear modulus and d is the distance between the load points and for the

shear beam [10] in which is E is replaced by %u. The displacement distribution in the strip

is,

u=u, (1—f) 1))

a

and hence for a crack speed ¢ and when u, = V¢

ii= V[1—(1—%)ﬂ ®3)

The dynamic G is,

_14U,
b da

G=

R

High Speed Fracture in Polymers and Composites 2827

where U is the kinetic energy given by,

Tl
Uy =§pbh.;[u dx

2 . 2 \2
el i =pbha%[1+a—t+(a—t) ]

a a

where p is the density. Differentiating again we have
dU, Eh (V)z dt ( a't)z ar G2
P | | ] 2 2 R e T ot e i
bda 6 \c a a a a S
and ¢ = E the wave speed.
p

We may use the expression for G assuming that G = G, a constant, for propagation. There
are three cases of interest.

1) Initiation

For the period up to initiation G < G, with d = d'= 0 and at initiation,

2 2
G=Gl=27_ Mty __@(X)
2 \a, 3 \c

where 1, is the initiation time and a, the initial crack length.
2
: ct, 2Gy( c g
ie — | == += (5)
a, ER\V) "3

2) Steady State Propagation

A constant static G, is achieved for constant speed crack growth;

>

ie a=ad, 6)

Ay it
for which ¢ = 0 and & = 1 and hence for propagation,
a



2828 Williams

- (&%)

Note that as V — e, and G, - 0, d, — ¢ and that for a finite initial crack length the
boundary conditions of this solution are violated since at t = z,

2 2
(gg) = ﬁ(ij + 1
a Eh \V
and thus from equation (5), a # a,. Also d =0 at initiation and not d, thus stimulating
transients in the motion of a.

3) Transient Solution

The full equation of motion for constant G is somewhat intractable, but a useful solution is
obtained by considering a small perturbation, p, from the steady state;

a=djpt+p ®)
substituting in equation (4) we have,

2 ..
lﬂzﬂi(Zj 1+ 2
b da 2 \c a

o

and hence
En( VY, 2p) En(VV(. pt
@ =t g Er -—(—J Jpls
2 \ 4, d,t 2 \c d,
2 2 2
ie L zi(ij R LS P ) ©)
d, Enh \V at| \ 4,

Thus for small perturbations the equation of motion for pis,

0=op+ pr? (10)
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2 2
where o=2|-<| =2 ﬁ(i) + 1
d, En \V
Equation (10) has a solution of the form;

lixe
p=const. t 2

where €=

2
Vao—1= % B[LJ = an

)

N[ =

which has a real part of;

1
r)2 ) t t
p= (t—j {B1 sin (elnt—J + B, cos (elnt—ﬂ (12)

The constants By and B, can be found from the mismatch in @ and d at ¢ = t, discussed
previously;

Le,at t=1,, p,=~d, and p, = a,(1-P)

where

e S8

_ 2
and g2 = w with y = ﬂ the ratio of initiation to propagation toughness.
12(y-p) G,
We have finally,
1 1
e Bt+12 [(1—B)c0sX— i sin X:'
a, 2¢
1 (13)
el 1((148)
L 4 B | cormal L+ (1-Ble | sin X
a, [3 4¢

~

where T=— and X =¢elnt.

~
S



2830 Williams

‘The form of the perturbations is shown in fig 2 where i is shown as a function of 7. For
aa
il
low crack speeds B — 1 and € — oo giving very rapid oscillations between bounds of +1 2 as

shown. As the crack speed increases the frequency decreases as € decreases and a typical

a . 5 o
curve for B=0.95,e=2.6, —C‘l = -54 is shown which illustrates the decreasing frequency

with time. The upper bound as V — o or G, — 0 is also shown for which B2 =E

a Lt : S
£=1.32, 70 =1. These oscillations result in oscillations in the crack growth which are

manifest in variations from the steady state.

THE DOUBLE CANTILEVER BEAM DCB

A s.imi.lar, tho}lgh rather more complicated, analysis may be applied to the DCB specimen
which is used in composites testing [4]. The equivalent solutions are

22 560 60(5)2

pé=|37 111 En V) | and ¢2 = 5737-352+19p*
4

b0 i

(14)

The steady state solution here is not constant speed but a = A/t where

P B R
e e el
and using similar boundary conditions,
i = [(1—[3@;)(—(%) sin X} (16)
Eho —'r_g[coanLl(M +2e(1-B) | sin X
a, B\ 8¢ J ] D

Note that the velocity is scaled on that in the steady state at 1 =1, ie

A _Ba,

g 2, 21,

and that there are pronounced similarities in form with equations 13.
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SOME EXPERIMENTAL RESULTS

Figure 3 shows crack growth data taken from a double torsion test on polyethylene [11]. A
mean line corresponding to the steady state is shown and the oscillating variations predicted
by the transient analysis are apparent. These are re-plotted in fig 4 as £ versus time and
ap
compared with those predicted from the analytical result using € = 8 and [ = 1 in this case.
The general agreement is satisfactory both in form and magnitude, though for times above 0.7
ms there are crack arrests which limit crack growth. The analysis of data from these tests will
be pursued further elsewhere [ 12].

The data shown in fig 3 is obtained from a conducting strip crack gauge and only measures
crack length every 10 mm or so which limits the accuracy possible in the perturbation
measurements. Fig 5 shows results obtained on a DCB specimen made from a carbon fibre-
epoxy laminate, where the crack length measurements are obtained from a high speed camera,
where readings can be taken every Smm and a better defined curve is obtained [ 3 ]. Also
shown is the steady state solution clearly indicating the crack perturbations. With this
number of points it is possible to make some estimate of crack speed and this is shown in fig
6 together with the steady state result. The crack length perturbation data are shown in fig 7,
together with the prediction of equation 16 with =1-13 and € =4-5 and the perturbation
velocity data are compared with equation (17) in fig 8 for the same parameters. The fit in
both cases is good and supports the general validity of the analysis.

CONCLUSIONS

The results show that the general method of using the static displacements to compute the
kinetic energy, although not exact, yields useful results. Experimental systems function close
to "steady state” conditions which are those which would pertain if the crack histories could
commence at a =0 at 1 = 0. Practically this is never possible since specimens must be pre-
cracked and all cracks commence growth under conditions which are not in accordance with
the steady state. This is mainly because a finite velocity is required at initiation, but in reality
all cracks initiate at d = 0. Arguments about crack being inertia-less bodies, such that finite
initiation velocities occur, do not appear to be true in practice. This is borne out by the
perturbation analysis which shows oscillating growth which is observed in practice.

In practical terms it seems that dynamic tests at fixed speeds, or slowly varying speeds as in
the DCB are hard to achieve in practice. Indeed the analysis would imply that in real failures
varying velocities are likely. The saving grace is that the notion of G, being constant at these
high rates seems to be a reasonable assumption and can be estimated. The analysis problem is
one of dynamics rather than fracture, since the behaviour of rapid cracks is mostly governed
by the interchange of strain and kinetic energies with that absorbed by fracture playing a
minor rdle.
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Figure 1. The axially loaded strip.
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Figure 2. Variations of velocity with time for the parallel strip
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