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ABSTRACT

The stress field around a spheroidal inhomogeneity is studied under dynamic loading condition
with particular attention being focussed on the stress concentration due to the inhomogeneity.
A hybrid method that combines the finite element methodology with an analytical approach
has been used to solve the problem for an inhomogeneity in the form of an oblate spheroidal
cavity. The results show that the dynamic stress concentration is influenced by the frequency of
excitation, aspect ratio of the cavity and Poisson’s ratio of the medium and that the dynamic
stress concentration can be about 100% higher than that predicted for quasi-static loading.
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INTRODUCTION

Stress concentrations in elastic bodies arise in the presence of geometric and material disconti-
nuities such as cavities, cracks, notches, inclusions, reinforcements, etc. Determination of stress
concentration is a problem of considerable interest in many branches of applied mechanics since
failure of a structural member often initiates at areas of high stress concentration. The re-
view article of Sternberg (1958) presents a comprehensive survey of the literature under static
loads. Stress concentration under dynamic loads has also been studied by many researchers. The
excellent monograph by Pao and Mow (1973) gives comprehensive coverage on this and other
related subjects. Recent results have been obtained by Bogan and Hinders (1993) for cylindrical
geometries. A spheroidal geometry, however, presents considerably greater analytical and com-
putational difficulties than does a cylindrical geometry.

In this paper the dynamic stress concentration around an oblate spheroidal cavity embedded in an
infinite elastic medium is studied. The geometry of the problem is depicted in Fig. 1 where z-axis
is the symmetry axis; 2a and 2b are diameters of the cavity along the z and z axes, respectively.
The spheroidal cavity is said to be prolate for b/a > 1 and oblate for b/a < 1. The excitation of the
medium is provided by a plane P wave propagating along the symmetry axis. The resulting stress
field is axisymmetric. Only time-harmonic excitation is considered. Thus, all the field quantities
have a time dependence e~ where w is the frequency of excitation. The time dependence is
suppressed in all subsequent representations for notational convenience. The problem is solved
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by using a hybrid method that combines the
finite element technique with spherical wave
functions. In this approach, a fictitious spher-
ical boundary B enclosing the cavity is drawn.
The region interior to this boundary is mod-
elled through an assemblage of conventional B
finite elements. The region exterior to the ‘
boundary B is represented by spherical wave :
functions. Coupling of these two different so-
lutions is achieved by imposing the continuity
of displacements and tractions along the com-
mon boundary B. This leads to a set of linear
equations that enables determination of the
displacements and stresses at any point of in-
terest.

Figure 1: Schematic of the problem
showing spherical coordinates

FORMULATION OF THE PROBLEM

The motion of the interior region may be perceived as forced vibration with the incident and
scattered waves providing the forcing functions at the boundary B. The governing equations of
motion can be obtained by following the conventional discretization process of the finite element
methodology for axisymmetric elements, and are written as

(SHq} = {R} M

where
[S] = [K] - *[M] . (@

in which [K7] and [M] are, respectively, the stiffness and consistent mass matrices of the interior
region; {¢} is the vector of nodal displacements; and {R} is the vector of nodal loads that has
non-zero components corresponding to the interface degrees of freedom only. If the vector {q}
is separated into two parts: {gg} corresponding to nodal displacement at the boundary B, and
{q;} corresponding to nodal displacements elsewhere in the interior region, equation 1 can be

written as
£ f21(a)={)
Ser Ses] lgp Rp

in which Rp represents the interaction forces between the interior and exterior regions.

In the exterior region, the displacements and stresses are obtained from the superposition of
incident and scattered wave fields which are denoted by the superscripts ¢« and s respectively.
Since the incident field is known, the vectors {g5} of nodal displacements and {Ry} of nodal
loads can be constructed by evaluating the displacements and stresses at each node lying on the
boundary B. The scattered field is given by the wave potentials ¢ and % which can be expressed
as an infinite series:

@ =) aiphn(aR)P,(cos ) (4)
X =3 aznh,(BR)P,(cosb) (5)
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where all the summations are over integral values of n from zero to infinity; a;, and a,, are as
yet unknown amplitude coefficients; R and 6 are spherical coordinates; ., is the spherical Hankel
function of the first kind; P, is the Legendre polynomial; o and 3 are wave numbers defined by:

2 WZP . ,52 _ “‘ﬁ (6)
T (2w Con
where A and p are Lame constants and p is the density of the medium. Each term in the series in
equations 4 and 5 represents a spherical wave function. By considering a finite number of wave
functions, it is possible to establish a relationship between the force and displacement vectors at
the boundary B, as
{Rp} = [S){gp} (7
where the matrix [Sf] is complex valued. The details of this development may be found in
Paskaramoorthy et al (1988).

The global solution is obtained by invoking the continuity of displacement and stress components
of the two regions at the nodes on the boundary B, leading to

20 05708 g o)
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Once the above equation is solved for the nodal displacements, the field quantities at any point
in the domain may be obtained.

NUMERICAL RESULTS AND DISCUSSION

In this study, excitation is provided by an incident P wave defined by
Ui - v¢1 ; ¢z' — eiaz (9)

which gives a maximum stress of o, = p3? in the absence of a cavity. In cavity problems, the
primary interest is in the hoop stresses oy and 044 Where t is the tangential vector to the surface
of the cavity (Fig. 1). These stresses are expressed in dimensionless forms by normalizing with
respect to the maximum stress, o,:

Tu = ; Tpp = = (10)

96 |R=a O |R=a

Thus the values of the 7;; and T4g can be considered as dynamic stress concentration factors.
The stresses are computed for various frequencies from the nodal displacments of Eq. 8 by fol-
lowing standard finite element procedures. Since frequency of excitation is proportional to the
wave number (Eq. 4), it is convenient to present the results for various values of dimensionless
wave number aa.

In order to gauge the accuracy of the numerical procedure, we first consider the scattering by
a spherical cavity which can be solved analytically. In Fig. 2, the numerical results obtained
from the hybrid method are compared with the analytical solution for low (aa = 0.1) and high
frequencies (aa = 3). It can be seen that the numerical results are in close agreement with the
analytical solution.

Figure 3 illustrates the angular distribution of 7 and 0g4¢ for different values of aa. For
aa = 0.02, the frequency is very small and the wave length is approximately 150 times the
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diameter of the cavity. At such wavelength, hardly any dynamic effects are present, and the dy-
namic solution can be regarded as representing a quasi-static solution. At other wave numbers,
the scattering phenomena dominate, considerably distorting the results from the quasi-static
solution.

The effect of normalized wave number aa on the dynamic stress concentration is illustrated in
Fig. 4 by plotting the normalized stresses 7, and Tpp at 6 = w/2 for different values of as-
pect ratio, b/a, and Poisson’s ratio, v. It can be seen that the Poisson’s ratio of the medium
significantly influences the results and that the dynamic stress concentration factors are higher
than the quasi-static values. For instance, the peak value of Gy corresponding to b/a = 0.2 and
v = 0.45 is about 48% higher than the quasi-static value. It is also noted that the dynamic
amplification of stresses is more pronounced for smaller aspect ratios. This may be attributed
to the sharp curvature at § = 7 /2. It is further noted that the dynamic amplification effects are
more significant at low wave numbers indicating that a designer should be more concerned with
low frequency than high frequency vibration.

Table 1 presents the maximum values of &, in the wave number range 0.02-3.0 together with the
maximum quasi-static values. It is not surprising that the maximum values are large when b/a
is small since the cavity is approaching the geometry of a penny-shaped crack. The frequency
and location at which maxima of @y occurred are given in Table 1. It can be seen that &y always
reached its maxima at the point § = /2. When the cavity is spherical, however, the maximum
values occur at various locations. Finally, the percentage increase of the maximum dynamic
stress concentration factor over the quasi-static value is given in the last column. This leads
to the conclusion that the dynamic stress concentration factors are considerably larger than the
quasi-static values. This becomes even more pronounced as Poisson’s ratio increases.

Table 1: Maximum values of &y,

b/a v Quasi-static | oy(max) of | Wave number | location | Percent
value dynamic aa 4 increase

0.25 6.379 8.336 0.78 90.00 31
0.30 6.333 8.349 0.74 90.00 32

0.2 | 0.35 6.266 8.412 0.69 90.00 34
0.40 6.163 8.579 0.61 90.00 39
0.45 5.965 8.977 0.49 90.00 50
0.25 2.987 3.512 0.68 90.00 18
0.30 2.943 3.491 0.65 90.00 19

0.5 | 0.35 2.882 3.485 0.62 90.00 21
0.40 2.798 3.524 0.58 90.00 26
0.45 2.669 3.748 0.52 90.00 40
0.25 1.848 2.000 0.55 88.00 8
0.30 1.812 1.978 0.55 88.00 9

1.0 [ 0.35 1.764 1.974 0.60 86.00 2
0.40 1.701 2.084 0.65 82.00 23
0.45 1.616 2.616 0.56 66.00 62

In Table 2, the maximum values 4, are given. It can be seen that the percentage-increase values
of Ty over quasi-static values are generally larger than those in Table 1. However, the absolute
values of the maximum stresses (columns 3 and 4) are smaller than those in Table 1. Thus a
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design process will be governed by the stress 7y .

Table 2: Maximum values of 54

b/a v Quasi-static | oy (max) of | Wave number | location | Percent
value dynamic aa (4 increase
0.25 1.437 1.781 0.79 90.00 24
0.30 1.813 2.298 0.75 90.00 21
0.2 |0.35 2.184 2.845 0.70 90.00 30
0.40 2.544 3.456 0.62 90.00 36
0.45 2.864 4.221 0.49 90.00 47
0.25 0.682 1.349 3.00 0.00 98
0.30 0.894 1.439 3.00 0.00 61
0.5 | 0.35 1.107 1.492 3.00 0.00 35
0.40 1.315 1.703 0.71 90.00 30
0.45 1.502 2.260 0.60 90.00 50
0.25 0.544 0.997 2.75 0.00 83
0.30 0.721 1.113 2.55 0.00 54
1.0 { 0.35 0.907 1.281 2:27 0.00 41
0.40 1.100 1.586 0.74 66.00 44
0.45 1.300 2.457 0.60 24.00 89
CONCLUSIONS

The stress field and stress concentrations around a spheroidal cavity embedded in an elastic
medium have been studied by using a hybrid method. The accuracy of the numerical method
has been verified by comparison with analytical solutions for a spherical cavity. For a spheroidal
cavity, it is shown that the dynamic stress concentration factors corresponding to the hoop
stresses 0y and 044 are significantly influenced by the frequency of excitation (or wave number),
geometry of the cavity and Poisson’s ratio of the medium. In general, the dynamic stress con-
centration factors are considerably higher than the quasi-static values, and in certain cases the
percentage increase may reach as high as 100%. It is also found that the hoop stress o;; is more
critical than the hoop stress o4y for the problem at hand.
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Figure 2: Comparison of stresses on the surface of a spherical cavity

Figure 3: Angular distribution of stresses on the surface of the cavity (v=0.35)
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Figure 4: Effect of frequency on the stresses at 0=m/2
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