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ABSTRACT

The dynamic interface crack growth along a curvilinear interface of a two-phase compound
consisting of two brittle solids with different thermoelastic material properties and subjected to
mechanical crack surface loads and superimposed thermal strains acting along the ligament is
investigated. By applying the linear theory of plane thermoelasticity and by assuming a small
interface curvature as well as by restricting to almost steady state conditions with reference to a
running interface coordinate system, the associated boundary value problems have been trans-
formed mathematically to vectorial Hilbert problems thereby adopting Stroh's method of gen-
eralized complex potentials. The curvature of the interface was handled by applying the confor-
mal mapping technique as well as methods of the first order perturbation analysis. Further, the
parameters of the eigenvalues and of the eigenvectors of the Hilbert problems can physically be
interpreted as elastodynamic interface mechanics parameters reading as (B,VP,BH[, Hye)and de-

pending on the velocity of a running interface crack tip.

Finally, based on a physically reasonable stress intensity vector definition, explicit integral for-
mulae for the stress intensity vectors of the p-problem (mechanically loaded crack surfaces) as
well as of the g-problem (thermally strained ligament) are obtained by applying an appropriate
eigenvector plane approach, and by involving Rice's scaling procedure for stress intensity fac-
tors. Some numerical examples are given.
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INTRODUCTION

Experimental investigations of fracture phenomena in fiber reinforced composites show the exis-
tence of different failure mechanisms in the low- and high-fiber concentration ranges of such
composite structures known as matrix and interface cracks, respectively. Further, the appearance
of branched crack systems consisting of a combination of curved matrix and interface cracks has
also been observed several times. Thus, an important problem concerning the failure behaviour
of mechanically and/or thermally loaded two-phase compounds consists in the prediction of the
prospective paths of extending cracks as functions of the geometrical configuration as well as on
the applied thermomechanical load distribution belonging to a given composite structure. The
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quasistatic extension of straight and curved interface cracks, respectively, as well as the crack
path prediction of extending thermal cracks in self-stressed multi-phase solids have been investi-
gated in the past by several authors (Erdogan, 1965; England, 1966; Rice and Sih, 1965; Herr-
mann, 1983, 1985, 1994; Herrmann and Grebner, 1984, 1985; Herrmann and Dong, 1994).
From a mechanical view point, the formation of interface cracks and a prospective subsequent
unstable crack propagation can be described by a set of distinct parameters of the interface me-
chanics. Especially, after the onset of unstable crack propagation, the material inertia cannot be
neglected if the crack tip velocity exceeds about one half of the Rayleigh wave velocity, Vg, Of
the more compliant bimaterial component. In this case a non-negligible portion of the initial
elastic energy stored in a multiphase compound is converted into kinetic energy of the cracked
solid.

Therefore, there exists a strong interest for the theoretical modelling of the general situation of a
dynamic crack propagation of straight and curved interface cracks for the sake of an understand-
ing of the interactions of the crack-tip velocity, and of the mechanical crack surface loads super-
imposed by the self-stresses originating from the applied thermal strains as well as from the cur-
vature of the interface. A comprehensive review concerning the state-of-the-art of the analysis of
the quasi-static and steady-state dynamic interface crack propagation of elastically isotropic and
anisotropic dissimilar materials has been given by Noe (1994). The investigations on rapid crack
propagation were triggered by Willis (1971) and Yang et al (1991) and were continued by Deng
(1993) and Noe and Herrmann (1993, 1994) and Herrmann and Noe (1995). Further, in the latter
papers, the most general situation of a rapid crack extension along curvilinear interface contours
subjected to thermomechanical loads was investigated thereby also considering the related
shadow-optical method of caustics for an experimental determination of stress intensity factors.

STATEMENT OF THE PROBLEM

In this paper the analysis of a dynamic interface crack growth in the material interface of an
elastically anisotropic dissimilar two-phase compound with mechanically stressed crack surfaces
and under constant cooling or heating AT has been performed. Figure 1 shows the correspond-
ing material model for a curvilinear interface crack propagating along the interface with the ve-
locity v.
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Fig. 1 Propagating interface crack

The associated mixed boundary value problem of the dynamic fracture mechanics has been
solved by applying Stroh's method of generalized complex potentials as well as Volterra's dislo-
cation method. Starting from the basic equations of linear thermoelasticity and by considering
the boundary and continuity conditions
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along the curvilinear path L = L"U L' as well as by assuming zero stresses at infinity the elastic
problem can be analyzed by the Lamé-Navier equations (LNE)
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formulated in a non-rotational crack tip coordinate system (ey,ey), running with the velocity v.
For crack tip positions near to the non-moving basis (ey,ey), and thus for small angles o, time
independent LNE are obtained which are the same as for the case of a straight crack extension,
namely

Cjisl(")usu = (Cjisl I pv281j6118is)u:,]lj =0, 4
By introducing the displacement vector approach according to Stroh (1962)
ug =a,f.(z,) , z;=x+iBy , kj=12) ©)

the solution of the LNE (4) is reduced to the solution of the following eigenvalue problem
(QA+(R+ RT)AP+TAP2)J_fJ." (z;)=0 (6)
where, according to Ting's (1986) notation, the matrices

A;=(a,,a,); , P;=diag(p,,p,) =diag(iB,,iB,); @)

are composed of the eigenvectors and eigenvalues of the LNE (4).
The potential vectors

Be) =R L@ ) 2 =) ()
are determined from an associated Hilbert problem.
FORMULATION OF A HILBERT-PROBLEM

By applying the conformal mapping technique the curvilinear interface contour L is mapped
onto the arc L of an auxiliary {-plane according to the conformal mapping function

z=0@)=C0+if©) , {C=0={'C=0=0 , {=E&+in C)
Then for slightly curved interfaces the associated vectorial Hilbert problem

Fu©BIT ) + Fu,@B,f;E€)= P& , Eelg (10)
H, (©)F,, )BT} (€)+Hy (O, E)B,f; €)=q, (&) , EeLg (11)

is obtained for the determination of the desired potential vectors fj (z;).

Further, by neglecting terms of the order O(f 5 (é)) the following definitions hold true
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Besides, the non-constant coupling matrix H,, (&), whose algebraic structure determines most of
the mechanical interface parameters, is defined by
H, (€) =H+if'(€)v’H, (13)

and consists of the respective skew-Hermitian matrices

H=-H" ; H=AB™-A,B," (14)
and
H =-H ; H =-ip,AB,"Y-p,@&,B," ] (15)

The load vectors
Par,. ©&= (Oyy: 0y, )Eu.ﬂ. v Gar, ®©= (Ug,‘g i “’1',.‘& )IDA 16)

denote the crack surface load and the thermal distortion jump.

Finally, the solution of the Hilbert problem (10), (11) ist gained by superimposing the mechani-
cal and the thermal distortion problem, hereafter called the P- and the g-problem, respectively.
Furthermore, the methods of linear algebra are applied and the solutions of the p- and the q-
problem, respectively, are determined by using the so-called associated eigenvector planes. A
detailed outline of this technique is given in Noe and Herrmann ( 1993).

DETERMINATION OF STRESS INTENSITY VECTORS AND NUMERICAL RESULTS

Integral representations of the ligament stress fields for the P- and the g-problem, respectively,

which are related to the solutions of the Hilbert-problem, and supplementcd by an appropriate

stress intensity vector definition lead to explicit integral formulae for the stress intensity factors
T

K :(KRQPH,KRQPI) and Kpgg, =(Kqu,Kqu)T as derived by Herrmann and Noe (1995).

According to these results a physically reasonable definition of a stress intensity vector at the tip
of a rapid propagating interface crack reads as follows

Km(f‘) = sl 2T 1}_{1{)1["qu (f)(XELQ (r))‘l Vq_lanQ‘ (r)] 5 KRn = (KRﬂU’KRm)T

an
Xie, (X5, (r))_l=r”z'f'“*“diag[(r/f)'i‘,(r/f)”‘] + [Kean] = Nmm™”

where 1 denotes the distance from the crack tip and f is a characteristic scaling length intro-
duced by Rice (1988) for stress intensity factors at interface crack tips. Further, the classical bi-
material constant & which is now velocity dependent causes the well-known phenomenon of the
oscillatory singularity at an interface crack tip, whereas the additional bimaterial constant Oy
arises only if a rapid interface crack propagation along a curved interface occurs.

By assuming that the crack surface loading acts along the interval [-a,0] and by taking the asso-
ciated ligament stress vector Popi,+ s well as the definition (17), where only the first order

terms are taken into account, an explicit formula for the stress intensity factors in case of the p-
problem has been obtained
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Figures 2 and 3 show numerical simulations of the influences of the curvature and the crack-tip
velocity on the magnitude as well as on the mixed-mode phase angle of the stress intensity vec-
tor, Kgq,, in case of crack surfaces under normal and shear loading. Thereby these quantities

=0.5;

where the assumed contours are modelled by third order polynomials. The magnitude of Kgg,

have been simulated for curvilinear interface contours up to a maximum slope of lfm“

has been normalized by the value at zero-velocity and for a straight interface, Kpgq,,. Further, an
elastically mismatched bimaterial with the bimaterial constant, g, =s(v=0):0.096 and the
Rayleigh-wave velocitiesv,, =988m/s and v,, =2914m/s has been chosen, where the nu-
merical simulations have been carried out in the velocity interval 0 <v <0.91v,,.

Besides, the characteristic length T =1.0mm has been selected and from the graphs given in the
Figs.2 and 3 for a mixed-mode loading situation with the magnitude p, =p, =—-1L0N/mm?,
acting along the interval [-a,0], a = 5.0 mm, it can be clearly recognized that the magnitude
(Kmp/KmpO) varies with increasing crack-tip velocity v. However, significant changes can

only be observed for velocities exceeding about one half the minimum Rayleigh-wave velocity

Vi In addition, the rapid increase of the ratio (Kyg, /Kyq,) for velocities higher than

v =0.8v,, points to the limit of the validity of the present first order theory. Furthermore, one
should remind in this connection that experimentally measured crack tip velocities are usually
limited to about 0.8vy,, Tippur and Rosakis (1991). The mixed-mode phase angle ®, varies
only slightly with the crack-tip velocity where in view of the experimental interface fracture me-
chanics a velocity-independent ®, possibly leads to a reduction of experimentally recorded pa-
rameters to only one if the mixed mode phase angle w,, of the static case has been measured
once. _ ‘
Moreover, for a thorough assessment of the thermally strained ligament case, and by assuming
the thermal strains to act along the finite interval [0,b] the corresponding explicit formula for the
stress intensity factors in case of the q-problem has been attained
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Fig2. Influence of the curvature and the crack-tip velocity on the magnitude of the stress
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Fig.3. Influence of the curvature and the crack-tip velocity on the mixed-mode phase angle of

the stress intensity vector Ky g, in case of crack surfaces under normal and shear loading
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where Ao, = [(oc“)2 _(0‘11)1] and Act,, :[(otn)2 —(oc“)l] denote the difference of the thermal

expansion tensors and AT =T —T, means the applied cooling or heating. Numerical simulations

of the influences of the curvature and the crack tip velocity on the magnitude as well as on the
mixed-mode phase angle of the stress intensity vector Kp, have been performed in case of

thermal strains acting along the ligament. Thereby the thermal strains operate along the interval
[0, b] of the length b = 5,0 mm, whereas the bimaterial properties, the interface contours and the
characteristic length t are the same as for the p-problem. Detailed results can be found in Herr-
mann et al. (1995).

ELASTODYNAMIC INTERFACE MECHANICS PARAMETERS AND GENERALIZED
DUNDURS DIAGRAM

The analysis of formula (18) makes apparently clear, that the invidual influence of each one of
the interface fracture mechanics features of interest, namely mechanical loading, interface,
crack-tip velocity and interface curvature, and their interactions on the stress intensity factors is
rather complicated. Since multi-valued relations between the mechanical features and the me-
chanical parameters exist, the influence of distinct mechanical parameters can hardly be con-
cluded from formula (18). A similar conclusion can be drawn concerning formula (19) and the
corresponding relations between the thermomechanical parameters and the associated ther-
momechanical features. '

Furthermore, a detailed discussion of the elastodynamic parameters for uncracked and cracked
bimaterial interfaces has been given in Noe and Herrmann (1996). Here, because of space limi-
tations in Fig. 4 the structure of the generalized Dundur's diagram for the dynamic case is given.
Thereby the generalized Dundur's diagram is framed by the polygon ACEF where the associated
part of the Dundur's diagram for the static case is enclosed by the polygon ABDF. The subdo-

main ABEF contains static Dundur's parameters for v 2 Vy-

Fig. 4. Generalized Dundur's diagram of dynamics
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