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ABSTRACT

In this study, the transient response of a propagating interface crack between two different
media is investigated. For time 7 <0, the crack is stress free and at rest. At #=0,a pair of
concentrated anti-plane dynamic loadings are applied at the stationary crack faces. We assume
that the stationary crack will begin to propagate along the interface with a subsonic speed as the
incident wave in the upper medium or in the lower one arrives at the crack tip. A new
fundamental solution is proposed in this study and the solution is determined by superposition of
the fundamental solution in the Laplace transform domain. The Cagniard-de Hoop method (de
Hoop (1958)) of Laplace inversion is used to obtained the transient solution in time domain.
Numerical calculations of dynamic stress intensity factors are evaluated and discussed in detail.
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INTRODUCTION

For the last two decades, the importance of composite materials has increased very rapidly in
engineering applications because of their high strength and light weight. However, flaws
contained at the interfaces of composite bodies due to improper adhesion may lead to serious
danger, and a better understanding of interface fracture mechanics is needed. A stationary crack
lying along the interface between dissimilar isotropic materials subjected to static loading was

first considered by Williams (1959) for plane strain condition. A number of solutions for the
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stress and the displacement field near the crack tip are obtained by England (1965), Erdogan
(1265) and Rice and Sih (1965).

In the field of propagating interface cracks, Brock and Achenbach (1973) analyzed the

extension of an interface crack under the influence of transient horizontally polarized shear wave.

Willis (1971) investigated the energy release rate of a steadily extending interface crack by
means of the local form of the Griffith virtual work argument. In the recent years, Wu (1991)
treated the similar but anisotropic problem and derived the crack-tip fields and energy release
rate successfully by employing the Stroh formalism for anisotropic elasticity. Deng (1992) used
the Radok’s complex function formulation with a two-term complex eigen-expansion technique
to analyze the near-tip fields for steadily growing interface cracks in dissimilar isotropic
materials. The stress singularities and the angular stress distributions near a propagating
interface crack in different transonic regimes for both anti-plane and in-plane cases are
determined by Yu and Yang (1994,1995).

In this paper, the transient problem of an interface crack propagating with a subsonic speed in
an infinite bimaterial is considered. At time 7=0, the crack is at rest and a pair of anti-plane
concentrated loadings act at stationary crack faces. After some delay time t,, the crack begins

to running along the interface with a constant velocity v as shown in Fig. 1. A new fundamental
solution is proposed and it is successfully applied towards solving the problem. The alternative
superposition scheme has been used to solve many transient problems for a homogeneous
medium successfully, e.g., Tsai and Ma (1992) for a stationary crack and Ma and Ing (1995a)
for a propagating crack.

REQUIRED FUNDAMENTAL SOLUTIONS

Consider a fundamental problem of anti-plane deformation for an extending interface crack in
dissimilar materials. The crack propagates with a constant velocity v which is less than the
minimum of the shear wave speed of these two materials. Figure 1 shows the interface crack
geometry and the coordinate systems. The coordinate & defined by &= x —wr is fixed with
respect to the moving crack tip.

Fig. 1 The configuration and coordinate System of a propagating
interface crack in a bimaterial.

In analyzing this problem, it is convenient to express the governing equations of wave motions
in the moving coordinates & — y as follows
Fw,.  w
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where the subscript j (j = 1,2) refers to the lower and upper media, respectively; w; are the
out-of-plane displacements, and b, are the slownesses of the shear waves given by

b,=1/c, = /pj Lo
in which ¢, are the shear wave speeds, x; and p; are the respective shear moduli and the

mass densities of two materials. It is assumed that the shear wave speed in the lower material is
less than that in the upper material( b, > b,). The nonvanishing shear stresses are

: W,
yg = M _;';7’ Tag = My @C] : @

T

The boundary conditions on the crack surfaces expressed in the Laplace transform domain can
be described as follows

7. i(E00s)=F (E0 s)—ett —w<£<0 3)
where s is the Laplace transform parameter and 7 is a constant. The overbar symbol is used

for denoting the transform on time # . The displacements and shear stresses must be continuous
on the interface which gives the following conditions on the interface

7,.(£.0,5)=7,,,(£,0,5), 0<g<w 4

w,(£,0,5) =7, (£0,5). 0<g<oo ©)
The solution of the proposed fundamental problem can be obtained by making use of integral
transform methods. The final results expressed in the Laplace transform domain are
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As shown in Fj i i
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the solutions of applying traction e

(by setting v = 0), the d i
3 ynamic stress intensity f;
can be constructed by (15) and (16) as followy .
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K'=p.[|=— 20

P\ (20)

is the corresponding static solution in a homogeneous medium. It can be seen that the dynamic
stress intensity factor of the stationary crack in a bimaterial is the same as the corresponding
static value K* in a homogeneous medium after the slower shear wave passed the crack tip. If
b, =b, =b, for the homogeneous case, eq. (20) can be evaluated by letting Q, (77):1 and

K= -0 .

In the previous discussion, it is known that the dynamic stress intensity factor will reach its
corresponding static value immediately after the slower incident wave passed the stationary
crack tip. It means that a stationary interface crack subjected to a pair of concentrated forces on
its faces can begin to propagate only at time b,#<t<b h. There are two special propagating
cases to be considered here. The first one is that the crack starts to propagate at once when the
incident wave with higher speed arrives at the stationary crack tip (¢, =b,h). The second one is
that the crack starts to propagate when the slower incident wave arrives at the crack tip

(t, =bh).

yields

(1) Case 1 : delay time 1, =bh
The applied concentrated loading on the interfacial crack faces written in the Laplace transform
domain for the moving coordinate system will have the following form

) 1 pd h(1=byv) A +sAE
,0,8) = — | F——ebmiestei g -
z‘yz(é] ) 2727".1 e ( )

in which d = 1/v is the slowness of the crack velocity and & =x—v(t-b,h). From the
combination of (15) and (22). The result of dynamic stress intensity factor expressed in the

Laplace transform domain will be
Z vl =il pdv2(l—b2v)Q:(/1) sh(1-bv) A
K (s):——__[ - eI g (23)
27 ° Js(A-d)aj, (4)
The dynamic stress intensity factor in time domain can be obtained as follow
pd2h(1—b,v) Re[Q:(—T/(l—bzv)/hﬂ
= - j dr. (24)
~ w1~ o[t —b,h[7+ h(d - b,)]
If t>7,, which is the time the slower incident wave in material 1 catches up with the
propagating crack tip, then the integration in (24) can be carried out and the final result is

R 2 . )2 = 2
K" ()=p /ﬁn[v(t—bzh)m]g*(d)(l byv) "H(r-1t,), (25)

where 1, =b,h(1-b,v)/ (1-bv). The expression for K" (¢) in (25) has the interesting form of
the product of a function O] (d)(1~5,v)"* and the corresponding static stress intensity factor

Kv,l(t

K® in (20) for applying a pair of concentrated loadings at crack faces with a distance
nction which

v(t —b,h) + h from the crack tip. The value O] (d)(1-b,v)" is an universal function which
depends only on crack speed and material properties. If b =b, and u, =p,, we have
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reduced to that obtained by Ma and Ing (1995b) in a homogeneous medium.

(2) Case 2 : delay time t,=bh
For the second case, the fracture tou
corresponding static value in (21). Fo
stress intensity factor for this stationa;

Follow the similar procedure in case
interface crack expressed in the Lapla

ry crack can be calculated by usin,
1, the dynamic stress intensit
ce transform domain can be obtained as follow
Ev,z (S) = =1 J’pd\/ 2(1 i bz V)Q: (’1)
L e oo
277 Js(A-d)a;, (4)

The dynamic stress intensity factor expressed in time domain is

:h(l—b,v)/ldl‘ (26)

2 . 12
K 0)=p | 0"@)(1- b H(r - b,h). 27
() i 7r[v(1—b,h)+h]~ ( )( i ) ( ] ) @7
The same as X*'(¢) in (25), the expression for K2 (#) in (27) has a interesting form of the
product of a function Q (d)(1—- b,v)"* and the correspondin,

g static stress intensity factor X*
in (21) with a distance V(¢ = b,h) + h from the crack tip.

NUMERICAL RESULTS

The wave fronts for the propagating crack in a short time period are plotted in Fig. 2. In this
figure, “1” and “2” indicate the direct waves produced by

the applied forces in the material 1
and 2, respectively. The diffracted waves “J” (i,7=12), denote the waves in medium i
resulting from the diffraction of a disturbance induced by the applied loading in medium i
1.0 -

b,/b,=2 b,/d=0.1

0.8

Fig. 2 Wave fronts of the incident and diffracted i

waves of case 2 situation for ¢ > L

.l,ll 1.5 2.0
t/t,
Fig. 3 Stress intensity factors of a propagating
interface crack in case 1 for different
values of y, /u, .

Figure 3 and 4 show the dimensionless stress intensity factors Kk "/p for the case 1 situation

) for the propagating interface crack in a bimaterial can be

ghness of the bimateria) is assumed to be equal to the
r byh<t<bh, the crack is still at rest and the dynamic

g the formulation in (24).
y factor for the propagating
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of the propagating interface crack versus dimensionless time #/7, for varlc.)us values of ,ul[ /i,

and b, /b, . It is of interest to see that for 7> 7, the dynamic stress intensity factors are almost
1 2 i ] i §

equal for this small crack velocity v = 0.1c,, under different material combination.
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. terface crack in case 1 for different interface crack in case 1 fqr ifferen
- values of b, /b values of crack velocity v .
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The dynamic stress intensity factors for different values c?f b /d under]co.nsta.nt ti,e/lz;:]llr::
4,/ 4, are shown in Fig. 5. It can be found t.hat the higher crack velocity (;s, N
dynamic stress intensity factor. Hence, t.he stationary crack has the largest dynam
intensity factor among these different running cases.

Figure 6-7 show the dynamic stress intensity factors for the case 2 situation of the propagating
interface crack.
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Fig. 6 Stress intensity factors of a propagating Fig. 7 Stress intensitvy factors of a propagating
g- interface crack in case 2 for different interface crack in case 2 for different
values of w1, /u, . values of b, /b, .
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It can be also seen in Fig. 6-7 that dynamic stress intensity factors are almost equal for 1 =4 h.

CONCLUSIONS

factor of a propagating interface crack is approximately equal to that in a homogeneous medium
for small crack velocity (v < Olc,,).
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