CONSTITUTIVE MODELLING OF HIGH STRAIN-RATE DEFORMATION:
APPLICATION TO ADIABATIC SHEAR BANDING

Y. ESTRIN(1) and A. MOLINARI(2)
()Department of Mechanical and Materials Engineering
The University of Western Australia, Nedlands WA 6907, Australia
(Z)LPMM, Universite de Metz, Ile du Saulcy, F-57045 Metz, Cedex, France

One of the mechanisms of failure of metallic materials is adiabatic shear banding -
localization of plastic strain caused and accentuated by softening associated with heat
release during the deformation process. Constitutive models suitable for describing
deformation at very high strain rates will be discussed. Particular emphasis will be put on
the effect of the strain rate and temperature dependence of the strain hardening coefficient
on the propensity of a material for adiabatic shear banding. The role of metallurgical
variables, such as the spacing between second-phase particles will be discussed.
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INTRODUCTION

An important mechanism of failure of structural materials under high rate of deformation is
associated with strain localization in what is commonly referred to as adiabatic shear bands
(Bai and Dodd, 1992). This term suggests that the effect is related to heat release during the
deformation process and that the rate of heat removal is sufficiently small for the notion of
adiabaticity to be of relevance. Localized deformation bands formed under these conditions
tend to be preferred sites for damage accumulation that eventually leads to fracture.
Engineering applications where this phenomenon is prevalent include high-speed forming
and metalworking, crashworthiness in automotive and aerospace industries, armour
penetration, and other impact dynamic problems. On a more microscopic scale, strain
localizations may affect propagation of cracks in metallic materials, shearing of asperities
in frictional sliding, etc. This is why deformation with high rate of strain, of the order of
103 s-1 and above, has been attracting the attention of engineers and researchers for
decades. A considerable amount of experimental data on adiabatic shear banding in a
broad range of materials has been accumulated to date (Bai and Dodd, 1992; Chiem et al.,
1988; Meyers et al., 1992; Murr et al., 1995). A number of theoretical models aiming at
describing high strain rate deformation in general and adiabatic shear banding in particular
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are in existence (Armstrong and Zerilli, 1988; Bodner, 1988; Culver, 1973; Fressengeas
and Molinari, 1987; Johnson and Cook, 1985; Molinari and Clifton, 1987). Most of these
models are phenomenological in nature, and - despite their generally good descriptive
capabilities - they give little guidance as to the design of materials with high resistance
against adiabatic shear banding. Such guidance can be expected to be provided by
microstructure-related constitutive models, notably those based on internal state variables
associated with dislocation densities (Kocks, 1976; Estrin and Mecking, 1984; Klepaczko
and Chiem, 1986; Follansbee and Kocks, 1988). In the present talk we shall give a brief
review of the models currently in use and then focus on some new developments which
emphasize the microstructural aspects of constitutive modelling. A model based on
dislocation density evolution (Estrin and Mecking, 1984; Estrin, 1996; Estrin et al., 1996),
which makes it possible to predict the effect of metallurgical structure on the propensity of
a material to adiabatic shear banding, will be presented.

PHENOMENOLOGICAL MODELS AND STRAIN LOCALIZATION CRITERIA

Some Empirical Facts and Models

An adiabatic shear band is a result of strain localization leading to a higher local rate of
heat release and the attendant local softening of the material which, in turn, accentuates
plastic strain localization. This thermomechanical coupling comes to bearing for
sufficiently high rates of plastic deformation and is facilitated in materials with poor
thermal conductivity and low heat capacity, as illustrated by unstable deformation
behaviour of metals at cryogenic temperatures (Molinari et al., 1993). Of course, the heat
generation conditions in a localized deformation band are far from adiabatic, but
historically this term has been used to emphasize the thermal nature of the shear bands. The
idea of local softening due to heat release associated with plastic work goes back to early
works by Farren and Taylor (1925) and Stepanov (1933) who put forward a hypothesis of
local amorphization, or even melting, in the vicinity of slip planes. Though this would
certainly represent an overestimation of the effect in most cases, evidence of thin solidified
melt layers at the centre of shear bands was found (cf. Hartmann et al., 1981). Although the
local heating effect is generally less dramatic than that, a temperature rise of several
hundred degrees is quite common, and this may be sufficient for a phase transformation to
occur, as is the case in steels and titanium alloys. This can result in the formation of
transformed shear bands, which can be visualized most easily. In the literature, a
distinction is made between such transformed shear bands and deformed shear bands
which are simply localized zones of intense plastic shear which do not undergo a phase
transformation. An example of a transformed shear band associated with a martensitic
transformation in the localized deformation zone is presented in Fig. 1. A deformed band is
shown in Fig. 2.

Obviously, adiabatic shear bands are the weaker parts of a structural component.
Transformed bands are more brittle than the surrounding material and provide sites for
brittle cracking, while deformed bands which underwent large strains are zones with
increased damage and are prone to ductile failure. Generally, adiabatic shear bands can be
considered as precursors to brittle or ductile fracture. (Bai and Dodd, 1992).
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Fig. 1. Deformed shear band in a plate that Fig.2. Transformed shear band in a
underwent a high velocity impact titanium alloy (after Bai and
(after Bai and Dodd 1992) Dodd 1992).

1 of adiabatic shear bands has been discussed extensively (cf. Bai and
B}cl:ilcri),hf ggg;lel\r/llcé}?e%}s’ et al., 1992, Murr et al., 1995). The salient features of adiabatic sheai
banding include a large local strain (5 to 100), a high shear strain rate (of the. order of 10
-106s-1), and a high local temperature. They are usually no.n-crystallographw_ and have ?1
thickness of tens to hundreds micrometers. No clear correlation of the 'ba.nd thickness wit
the grain size could be established which suggests that a characteristic length scale is
determined by other factors, such as heat conduction and, possibly, other non-local effegtzs:
Often periodic patterns of adiabatic shear bands are found (Bai and Dodd, 1992;

Nesterenko et al., 1995).

iabatic shear banding plays a detrimental role in many engineering situations,
312?: L;%? igsis where it is desﬁ'fbley. Examples can be found in metal cutting, where
formation of adiabatic shear bands facilitates fragmentation of chips, or in armour
penetration where they can lead to 'self-sharpening' of a projectile. In most c_asles,
modelling adiabatic shear banding involves finite element calculations, and it is Cm(;llt; ' tﬁ
base the computations on a constitutive model adequately capturing tl}e specifics o 1tg)
speed deformation and yet simple enough as far as the number of material parameters to be
identified experimentally is concerned.

iri i i iation of the flow stress
A large group of empirical relations suggested to describe the variatio
with z%hegplastic strain are generalizations of the Ludwik equation written for the case of

simple shear (or torsion) as
T=A+ BY". 1
Here T and vy are the shear stress and the shear strain, respectively, and A, B and n are

considered to be materials constants. To include temperature and strain rate effects, this
equation was modified by several authors. Litonski (1977) suggested the form
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t=C(-al)1+b))" (7, +7)" @)

! here T and ¥y are the absolute temperature and the shear strain rate, respectively, and C,
- b, Yo, m z}nd n are constants. In addition to the Ludwik hardening, this form takes into
account strain rate hardening and thermal softening.

ol.inari and Clifton ( 1987) and Molinari (1988) used an equation in which the effects of
rain hardening, strain rate hardening and thermal softening are accounted for in a
lactorized power law form:

UL TE 3)

{

~here m, n and W and v are constants.

Two models which became very popular, viz. those of Johnson & Cook (1985) and

rmstrong & Zerilli (1988), can also be viewed as generalizations of Ludwik's equation.’

_ owever, the strain rate dependence of the stress is taken in the logarithmic form. The
Johnson-Cook equation is written as

={l1+pin(7/ 7,)[1-Tr A+ By") @

Here T, =(T-T,)/(T, - T,) is a homologous temperature, with T and Ty denoting the

elting temperature and a reference temperature, respectively. The parameters p, ¥, and K

we been introduced. The Armstrong-Zerilli model has two modifications to account for
differences between bcc and fcc metals. It is interesting to note that in the fcc variant,
parabolic strain hardening is coupled with a strain rate and temperature dependence. The
~ thors should be credited for the recognition of the importance of such coupling, but the
| “'m of the constitutive equation,

T=1,+By'"? exp[(—ﬁﬂ +B,In é)T]+Kd"”2, ©) |

aere 7;,f3,,5 and K are constants and d is the grain size, lacks a dislocation theory
widerpinning.

A popular model is that due to Bodner and Partom (Bodner, 1987) which is based on a
ncept of an evolving internal variable that enters a kinetic equation relating the second
variants of the deviatoric stress and the plastic strain rate. The form of the kinetic

equation and of the evolution equation for the internal variable were chosen more or less

heuristically, but with deep physical intuition. A main deficiency of the model appears to

>~ the absence of a strain rate dependence of strain hardening (Estrin and Mecking, 1985).

ywever, this issue was addressed in a recent version of the model (Bodner and Rubin,
'94) that does include this effect.

““ability Analysis

athematical analysis of adiabatic shear banding can be demonstrated, by way of example,
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shear band is formed around the tube, as illustrated by Fig. 3. In this example, an adiabatic
shear band in a cold rolled steel 1018 was initiated at a shear strain around 0.14 leading to
fracture at a shear strain between 0.25 and 0.5 (Costin et al., 1979). The band width was in
the range of 100 pm. To determine the critical conditions for the onset of strain
localization, using a simple phenomenological model, Molinari (1988) carried out a linear
stability analysis using a constitutive relation given by eq. (3). An idealization of the
deformation geometry presented on Fig. 3 is a strip of material of height h, equal to the
gauge length of the tubular specimen, deformed in simple shear in direction y (Fig. 4). The
direction x is parallel to the axis of the tube and z is perpendicular to the wall. All
derivatives with respect to y and z are assumed to be zero, and the deformation is zero in
the direction z. The width w of the strip can be x-dependent to represent a geometrical
defect. The continuum mechanics frame of the model in the simplest case when inertia is
neglected is given by the compatibility condition,

. ov
= e 6
b (6)
where v is the material point velocity, and the equilibrium condition,
W = const. @)

The boundary conditions are givenby v=0atx=0and v=V = hy,, atx =h. Here ¥,,, -
is the nominal imposed strain rate. Assuming further that the process is adiabatic, i.e.
neglecting the heat conduction and heat removal to the thermal bath, reduces the heat
conduction equation to

DcT = Bty (3

where D is the material density and c the specific heat capacity; the parameter B denoting
the fraction of the mechanical work converted into heat is typically around 0.90-0.95. The
assumption made with regard to inertia is supported by numerical simulations by Shawki
(1986) who found that for steels, inertia effects prior to onset of localization can be
neglected for nominal imposed shear rates up to 103 s-1. Furthermore, in the pre-
localization range, heat conduction does not come into play either, i.e. the adiabaticity
assumption is justified as well. y

Introducing a small perturbation of the (time dependent) uniform solution and identifying
the onset of strain localization with the condition that this perturbation be growing with
time (Clifton, 1978; Bai, 1982; Molinari, 1988), one finds easily that uniform deformation
becomes unstable if

ﬂlm. )
DcT n

This inequality has a very simple interpretation. In particular, it reflects the competition
between the stabilizing effect of strain hardening (characterized by the parameter n) and the
destabilizing effect of thermal softening (characterized by the parameter V). It is interesting
to note that in this formulation the strain rate hardening parameter m does not enter the
instability condition. However, it can be shown that it determines the initial rate of growth
of perturbations and does affect the kinetics of adiabatic shear banding (Molinari, 1988).

tor.the case .of. a thin-walled tube twisted in a torsional Kolsky bar (Costin et al., 1979). A
scribe line, initially straight and parallel to the tube axis, exhibits a discontinuity when a

\
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scribe line

}— gage length —]

a Wi
Fig. 3. Shear of a scribe line i i i i
B antae S Fig. 4. Geometry of a thin-walled torsion specimen

with a thickness defect as used by Costin et al
%&1§r%%§ﬁs;czlm 157 (1979) gI,itonski-type specirncn).y Also shc?warll .is
® ). .an equivalent simple shear problem for a layer
infinitely extended in the y-direction.

A common - and justified - criticism of linear stabili i
or 1 ility analysis concerns the f: i
;ggai;)zr:iilgsrg :;r bt;lelonsct (c)if straig localization may be fo):md adequrzxiltsély cthic;pﬁztn::isn})cf
lizat slow and would not result in a macroscopic shear banc ;
Molinari, 1988). Full nonlinear analysis i i i Sefteotenrtl b
i ) : ysis is required in order to warrant a reliabl icti
The results of such analysis will de i rilrgimond sy
pend on the details of the constituti odel i
as subtle features of strain hardenin i i e
1 g behaviour, and especially possible t
strain rate dependencies involved, will affect i 1 4 e
destabilizing effects. It cannot be ex; st ol L o
| > ! pected that heuristic or pheno logi
the kind described above will ca e il
] abo capture those subtle features. Physically based
g;loa dctallc‘d dpscrgpuon of microstructure evolution during tl?c dcfo};'mzsﬁonrg(r)ggésssb Zsisg .
re promise in this regard. In the following section we shall outline one such model and

shall apply it to th i i i i : f
Sketche%pig}:ig_% . e analysis of adiabatic shear banding in a Litonski-type specimen

DISLOCATION DENSITY RELATED CONSTITUTIVE MODELLING

!t is an established fact that in additio
is a:nother strain rate effect that influ
This dependence is associated with

n to the strain rate sensitivity of the flow stress, there
ences the deformation behaviour of metals and alloys.
the rate of the microstructural evolution during the
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deformation process which is reflected in the strain hardening behaviour It is commonly
accepted that for a broad range of materials - and certainly for those of interest for high
strain rate applications - the strain hardening coefficient decreases with strain,
asymptotically tending to zero. This implies that the flow stress tends to a saturation value.
Experiments show that the saturation stress is a function of strain rate and temperature and
that this dependence is often stronger than the dependence on strain rate and temperature of
the stress corresponding to a fixed microstructure, cf. Kocks (1976), Klepaczko and Chiem
(1986), Estrin (1996). (The latter dependence can be measured in experiments in which the
strain rate or temperature are changed in a jump-like manner.) The behaviour described -
commonly referred to as stage III hardening - reflects a competition between athermal
strain hardening and thermally activated dynamic recovery processes. Though full
saturation of stress is never reached due to interference of the so-called stage IV hardening
stage that sets in at very large strains, a stage III hardening model is what is needed to
describe initial stages of strain localization.

Klepaczko (1975) and Kocks (1976) are to be credited for first recognizing the importance
of the strain rate and temperature dependence of the strain hardening coefficient in
constitutive modelling. They also put forward concepts and formulations which can be
found in microstructure related constitutive models prevalent in the current literature. Their
approach is based on treating the dislocation density as a microstructural internal variable
and consider the dislocation density evolution as a process underlying strain hardening. A
variant of a model of this type (Estrin, 1996; Molinari et al., 1995; Estrin et al, 1996) will
be presented here.

The approach to dislocation density related constitutive modelling which goes back to
Klepaczko and Kocks is based on the notion that the plastic strain rate is determined by
glide of mobile dislocation in the material characterized by its instantaneous
microstructural state. In the equation describing the glide kinetics (the kinetic equation) , a
microstructural variable appears as a parameter. However, the microstructural state itself is
considered to evolve with plastic strain. If the state is associated with the dislocation
density, a description of its evolution is provided by an evolution equation describing the
variation of the dislocation density due to dislocation storage and concurrent dislocation
annihilation processes. Dislocation glide and dislocation annihilation (recovery) processes
are separated in this picture. No contribution of recovery to the overall plastic strain rate is
included.

A natural representation of the kinetic equation is in the Arrhenius form

7=V exp[— £ f;”] (10)

where AG(7) is the stress dependent Gibbs free energy of activation for the thermally
activated process of dislocation glide, k is the Boltzmann constant and Y., is a pre-
exponential factor that for our purposes may be considered constant (Kocks et al., 1975).

The structure which implicitly enters eq. (10) is specified by a single internal variable, To,

with which the shear stress T scales. A convenient simplified representation of equation
(10) is

\9
7= TupexXp _Akc;(l—(fi)} (11)

o —

e
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where AGo is the value of AG at zero shear stress and the exponents p and q are fit
parameters providing the ¥ vs. 7 a required shape (Kocks et al., 1975; Follansbee and

vocks, 1988). An obvious deficiency of these formulas is that in the limit of 7— 0 they
:Id a finite plastic strain rate. However, in the present context this limit case is of no
relevance.

Another representation of the kinetic equation is suggested by the fact that in analyzing
lermally activated plastic deformation it is customary to present the data as

ogy vs logt diagrams. In what follows we adopt the power-law form of the kinetic
equation:

£ y(rl) | (12)

lere the factor ¥, can be considered constant. This representation can only be reasonablé
-. the power m corresponding to the slope of the log ¥ vs logt diagram coincides with the
quantity (dIny/Jdln 7)., as obtained from the original equation (10). We thus require that

= (13

vhere V., =-0AG(1)/ Jt is referred to as the activation volume of the underlying

islocation glide process. In the case under consideration, the latter quantity is given by the

-oduct of the average spacing L of localized obstacles to dislocation glide, the so called
obstacle width, which quantity depends on the nature of the dislocation-obstacle interaction
(and is generally shear stress dependent), and b. (A numerical constant depending on the
' bstacle statistics should also be included for generality.) Obviously, requiring that for a
| ‘ven temperature and a fixed value of 1o both equations, (12).and (10) yield the same

value of ¥ for an arbitrarily chosen 7, the pre-exponential factor ¥, can be expressed in
terms of the quantities in equation (10). It can be estimated roughly as

o= Voo €XP(=AG, / kT), (14)

where AG, is the value of the Gibbs free energy of activation AG at T =0.

e focus here on face centered cubic metals where the so called Peierls stress stemming
uom the lattice periodicity is negligible and the obstacles to dislocation glide may be
associated with impurity atoms or forest dislocations. In sufficiently pure materials the
~lide resistance caused by the interaction of gliding dislocations with the forest will be

svalent right from the beginning of deformation, but even with alloys, dislocation

ultiplication will lead the interaction with the forest to outweigh the effects due to foreign
atoms as straining proceeds. In such a situation, the average obstacle spacing L proves to

be governed by the average dislocation density p and is given by

<1/ p'? (15)
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Having in mind that the shear stress scales with p1/2 (Kocks, 1976; Estrin & Mecking,
1984) and neglecting the stress dependence of the obstacle width we find that the product
V.7 may be considered stress independent. Introducing A =V, 7/ k leads to

m= A/T. (16)

Measurements of the strain rate sensitivity of the flow stress in fcc metals (Duffy, 1982)
confirm a reasonable constancy of A.

The situation is different with bcc materials: the activation volume for the dislpcation
motion in the Peierls potential can no longer be considered to be inversely proportional to
the shear stress, cf. Kocks et al. (1975), and equation (16) with a constant A cannot be
adopted.

In the constitutive formulation used, the structure is represented by the internal variable 10
(referred to as the 'mechanical threshold stress' (Follansbee and Kocks, 1988)) which, in

turn, is related to the dislocation density p (Kocks, 1987; Estrin and Mecking, 1984;
Klepaczko & Chiem, 1986):

7, = aGbp'"? a7

Here G is the shear modulus, b the magnitude of the dislocation Burgers vector and o is a
numerical constant. An equation that represents a competition between dislocation density
accumulation due to their immobilization (storage) at impenetrable obstacles and
annihilation due to recovery processes,

dp/dy=kp"* —k,p (18)

proved to be particularly adequate for describing the strain hardening behaviour in a
coarse-grained single-phase material (Kocks, 1976; Estrin & Mecking, 1984). While the
coefficient k] can be taken to be constant, the coefficient k7 is strain rate and temperature
dependent, as it reflects thermally activated recovery processes, e.g. those due to cross-slip
of screw dislocations. The temperature and strain rate dependence of k3 is expressed by

. \~l/n
k, = km[%) (19)

o

Here k20 and y; are material constants, while the exponent n is temperature dependent. As
discussed by Kocks (1976), this temperature dependence can be expressed by
n=B/T (20)

where B is a constant for a given material. The characteristics of the material enter through
the stacking fault energy y:

Gb’ I k

s S ARIMGE, 1)
C +GCx/Gb
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Here € and C2 are constants. This phenomenological relation (Kocks, 1976) provides a
description of the effect of stacking fault energy on the propensity of screw dislocations to
cross-slip. A large stacking fault energy, i.e. a small B, inhibits dissociation of dislocations
into partials and thus increases the probability of cross-slip.

Combining equations (12), (17), (18) and (19) leads to the following expression for the
strain hardening coefficient:

6=(3r,/3y), = 6,0~ TT ) (22)

os

where the saturation stress is given by

. I/n . \!l/n
T, = r*(-”—] = 1*(—?’—) ©23)
w* %

The quantities 8o and T* can be interpreted in terms of the parameters in the dislocation
density evolution equation:

6, = aGbk, / 2; T*= aGbk, / ky, - (24)

Numerical calculations of the deformation behaviour for a Litonski-type specimen shown
in Fig. 4 using the above constitutive model in conjunction with egs. (6) - (8) for the
constant imposed shear strain rate were carried out for OFHC copper (Estrin et al., 1996).
The thickness defect was characterized by the thickness ratio, f = wB/wA, and the relative

extension of the thinned portion of the specimen, AB=hB/(ha+hB). Here A stands for the
thicker and B for the thinner part of the specimen. Representative material parameter
values were chosen using the results of Tong et al. (1992), Follansbee and Kocks (1988),
and Johnson (1991). Here we present some selected results of the calculations. Figure 5
shows the effect of the parameter A on the onset of strain localization. It is seen that an
increasing A, i.e. a decreasing instantaneous strain rate sensitivity of the flow stress, has a
destabilizing effect and leads to premature localization. The influence of the strain rate
sensitivity of the strain hardening coefficient, represented by the inverse of the parameter
B, is more intricate, cf. Fig. 6. It is recognized that the critical strain 7, at which strain
localization sets in depends on B in a non-monotonic way. For the values of the material
and geometry parameters chosen, 7, passes through a minimum at B = 8500 (Fig. 7). The
range of B-values consistent with the material data obtained by Follansbee & Kocks (1988)
corresponds to the ascending branch of the ¥, vs. B curve. At first glance, this result is
hard to rationalize. Indeed, an increase of B leads to a reduction in the strain rate sensitivity
of the strain hardening coefficient (and thus indirectly of stress at a given strain) and should
be expected to have a destabilizing effect. However, the attendant increase of the saturation

stress Ts and of the strain hardening coefficient 8 produces a concurrent stabilizing effect.
It should also be noted that the attendant increase in temperature leads to a decrease of the
stress exponent n and thus counteracts the increase of B. The results of numerical
calculations presented in Figs. 6 and 7 suggest that the stabilizing effects prevail over the
destabilizing one for B above 8500 but that the inverse is true for B below this value.
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Fig. 5. The effect of the inverse instantaneous strain rate sensitivity parameter A on shear
localization.

Fig. 6. The effect of the parameter B characterizing the inverse strain rate sensitivity of the
strain hardening on shear localization.
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I 1. 7. Nonmonotonic dependence of the onset strain for shear localization, Y1, on the

parameter B.

T*e fact that for sufficiently large B the increase of this parameter leads to a delay in shear
1 alization and also to an increase of the mechanical energy absorbed prior to shear
1 ‘alization can be used in alloy design. To have a localization-resistant material that
possesses a large B, one can use the effect of alloying on the stacking fault energy
reduction, cf. eq. (15). For example, for the case of copper, alloying with several percent Al
or Si can reduce the stacking fault energy by a factor of 2-3 (Carter & Ray, 1977). This
1 ie is suitable for materials with sufficiently large B (say, larger than 8500 for the set of
1, lel parameters used in the numerical analysis of Estrin et al. (1996)). By contrast, in the
opposite case of B < 8500, the recipe would be to purify the material so as to increase the
stacking fault energy and decrease B, thus enhancing stability against shear localization.

T : constitutive modelling frame used makes it possible to look into the effect of non-
s -arable second-phase particles or grain refining on adiabatic shear banding. Here we
present the results for particle strengthening only. Particle effects enter through an additive,
Orowan-type, contribution to the 'mechanical threshold stress':

¢ = aGbp'® +0.84Gb/ A (25)

where A is the average particle spacing in a dislocation glide plane and also through an
¢ litive storage term in the evolution equation for the dislocation density. Instead of eq.
{ ), one has (Estrin and Mecking, 1984; Estrin, 1996)

dp/dy =B/ (bA)+kp'? - kyp (26)

‘;‘, »re B is a numerical constant, typically of the order of 0.1 to 1. The results of the
Cuiculations based on the modified equations are presented in Fig. 8. The main conclusion

Tg.MPa
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is that for sufficiently small values of A, the critical strain for the onset of localization may
decrease appreciably, while the energy absorption prior to failure is practically not affected.

1 B=lA=+00

2 g-l.l\=1001,un
3 cesicins =1,A=10pum
4——— B=lp=1pm

Fig. 8. The effect of second-phase particle spacing on the propensity for strain localization
B=1.

In the cited paper (Estrin et al., 1996) it was also shown that for a model accounting for the
strain rate and temperature dependence of the strain hardening in a realistic, physically
relevant way, linear stability analysis fails to deliver verifiable predictions consistent with a
full numerical analysis of adiabatic shear banding. Not only quantitative, but also
qualitative discrepancies were found. This observation should alert researchers wishing to
use linear stability analysis as a first guide to adiabatic shear localization criteria.

CONCLUSION

With this brief review we have shown that the use of microstructure-related constitutive
modelling provides a possibility of consistently monitoring the effects of different
metallurgical parameters, such as the solute state of an alloy or the spacing between
particles of a second phase, on the resistance of the material to adiabatic shear banding.
This analysis shows ways of influencing this resistance, and we see its virtue as a tool for
alloy design for high strain rate applications.
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