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ABSTRACT

Constitutive equations for a class of linear viscoelastic composites with damage growth are
reviewed and then applied to modeling the behavior of a particle-reinforced rubber with
microcracking and a fiber-reinforced plastic with transverse cracking. Conditions which
lead to relatively simple constitutive equations for composites are first reviewed. These
equations and the evolution equations for damage growth are like those for elastic materials,
except history-modified strains, called pseudo strains, replace physical strains. Use of these
equations is then illustrated for a highly-filled rubber and a fiber-composite laminate, both
with significant amounts of damage.
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INTRODUCTION

For many important viscoelastic polymeric composites, the reinforcement is very stiff rela-
tive to that of the polymer matrix. This condition, together with the common case in which
the matrix can be characterized by a single creep or relaxation function (e.g., the matrix is
linearly viscoelastic with an essentially constant Poisson’s ratio) lead to a relatively simple
mathematical model of the composite, with or without distributed microcracking. Basi-
cally, through a modification of the strains, the homogenized constitutive equations are
like those for an elastic composite. The evolution equations for damage growth simplify
in the same way. Theory and application of these ideas for linear and nonlinear media
were published many years ago (Schapery, 1981, 1982, 1984). Here we shall briefly review
the basis for these simplified models in the linear viscoelastic range and then describe two
recent applications. The first one is concerned with the behavior of a highly-filled particle-
reinforced rubber under multiaxial loading, while the second deals with transverse cracking
and its effect on the homogenized constitutive equation for a fiber composite.

CONSTITUTIVE EQUATIONS WITHOUT DAMAGE

We consider first the case in which there is no damage and the monolithic or composite
material is linearly viscoelastic and anisotropic. Then, with € and o representing the strain
and stress tensors, respectively, the constitutive equation is
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€ ={Sdo} + er (1)
where S is the fourth order creep compliance tensor and er is the strain tensor due to
temperature and moisture (and other absorbed substances which affect the strains). The
braces are abbreviated notation for a linear hereditary integral. Although the most general
form could be used, allowing for general aging effects, for notational symplicity we shall
use the familiar form for thermoheologically simple materials,

sy = [ re-erghat = [* re-e)2a ©)

where

t
¢= [ dt'far(T ()], ¢ =€) ®)
and ar is the temperature shift factor. If the temperature is constant in time then
& —¢& = (t—1t)/ar. Physical aging (Struik, 1978) may be taken into account by in-
troducing explicit time-dependence in ar; i.e. use ar = ar (T,t") in Eq.(3). The effect
of plasticizers, such as moisture, may also be included in ar. When Eq.(2) is used with
Eq.(1), f and g are components of the creep compliance and stress tensors, respectively.

In certain important cases, the creep compliance components are proportional to one func-
tion of time,

S=kD (4)
where k is a constant tensor and D = D (£) is a creep compliance. Isotropic materials
with a constant Poisson’s ratio satisfy Eq.(4). If such a material has mechanically rigid
reinforcements and /or holes (of any shape), it is easily shown by dimensional analysis that
its homogenized constitutive equation satisfies Eq.(4); in this case the stress and strain
tensors in Eq.(1) should be interpreted as volume-averaged quantities (Hashin, 1983). The
Poisson’s ratio for polymers at temperatures which are not close to their glass-transition
temperature, Ty, is nearly constant; above T, Poisson’s ratio is essentially one-half, while
below Tj, it is commonly in the range 0.35-0.40 (Schapery, 1974).

Equations (1) and (4) give
€=k {Ddo} +er (5)
The inverse is

ag = kI{EdG} S k[{Ed€T} (6)
where k; = k™! and E = E(€) is the relaxation modulus.

In relating solutions of elastic and viscoelastic boundary value problems, it is helpful to
introduce the quantities

i L Rl Rl
= =l = b7
€ 15 {Ede}, er i) {Eder}, u i) {Fdu} (7

where Ep is a arbitrary constant with dimensions of modulus, called the reference modulus;
also €® and € are so-called pseudo strains and u® is the pseudo displacement. Equation
(6) may now be written as

o= Cell— et (8)
where C = Egk; is like an elastic modulus tensor. Equation (8) reduces to that for an
elastic material by taking F = Ep; it reduces to the constitutive equation for a viscous
material by taking E as a Dirac delta function.
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A CORRESPONDENCE PRINCIPLE WITH DAMAGE GROWTH

When Eq.(8) is combined with boundary conditions and the remaining field equations, and
ap is spacewise constant, a simple method for deriving viscoelastic solutions results, which
may be stated using a so-called correspondence principle.

Iirst, we introduce the so-called reference elastic boundary value problem and solution.
This reference problem uses Eq.(8) together with pseudo strain-pseudo displacement equa-
tions and the equilibrum equations in terms of o. The boundary conditions are T; = o7
(where n is the outer unit normal) and Uf = uf on the surfaces Sy and Sy, respectively.
The solution to this problem is o, ef; and uf, called the reference elastic solution.

let us now state the correspondence principle, designated as CP-II by Schapery (1981),
and adapted here to the present linear formulation: For the viscoelastic body, let surface
tractions T;, and displacements U; be specified functions of time and position on surfaces
S and Sy, respectively. Further, we suppose dSr/dt > 0, where the total, instantaneous
surface is S = St + Sy. Then, the viscoelastic solution is

Tijy, €5 = ER{DdG,g , U = EH{DdU,f%} (9)

Thus, one first solves the reference elastic boundary value problem. Then the viscoelastic
stresses are equated to the elastic stresses, while the viscoelastic strains and displacements
are found by evaluating the hereditary integrals in Eq.(9). It should be noted that the
specified boundary tractions in the elasticity and viscoelasticity problems are the same.
However, in order that the viscoelastic displacements in Eq.(9) equal U; on Sy, it is neces-
sary to specify UR such that

UF = = (BdU) (10)
Er

where F is the relaxation modulus associated with the creep compliance D. It should also

be added that the instantaneous geometry of the elastic and viscoelastic bodies is to be

identical, including the crack geometry. The condition dSr/dt > 0 allows for crack growth,

but not crack face contact and healing (unless the tractions on rejoining crack faces are

treated artifically as specified quantities).

If the viscoelastic body is a composite, these cracks may be of any size relative to the size
of the constituent phases (assumed to be perfectly rigid or soft). In using this correspon-
dence principle to develop constitutive equations for homogenized media with distributed
cracking, the boundary conditions are specified in the usual way; the external surfaces of
a representative volume element are subjected to tractions which are spacewise uniform or
to displacements which vary linearly with respect to spacial location (Hashin, 1983).

For the special type of composites considered here, Eq.(8) for the viscoelastic matrix and
the correspondence principle lead to the same form of a constitutive equation for the com-
posite. For the composite, C is to be interpreted as the effective modulus tensor for the
reference elastic problem and, in general, depends on the reinforcement and hole geometry
as well as the instaneous geometry of all cracks.

Equations for predicting crack growth (or, more generally, damage growth) in the special
type of viscoelastic materials studied here have been developed and applied in previous
work (e.g. Schapery, 1981, 1982, 1984). We shall discuss specific growth (or evolution)
equations in the two examples that follow.
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APPLICATION TO A PARTICLE-REINFORCED RUBBER

Rubber is frequently filled with relatively high modulus particles. Two importnt structural
applications are tires and solid propellant. Here we shall briefly illustrate the composite
version of Eq.(8) for an inert solid propellant. Theoretical and experimental details are
given elsewhere (Park and Schapery, 1996). The matrix is a lightly crosslinked rubber,
and it is filled with 70 volume percent of a bimodal distribution of particles; their modulus
is at least three orders of magnitude higher than that of the rubber. Crack-like defects
develop and grow in the rubber and at particle-rubber interfaces even under applied stress
that is well below the global strength of solid propellant (Cornwell and Schapery, 1975).
Initially the material is isotropic. However, the damage (microcracking) produces global
anisotropy. For the particular case studied here, in which specimens (3 x .4 x .5 inches) are
subjected to specified, time-dependent axial elongation and constant confining pressure,
the damage leads to transverse isotropy, with the axis of isotropy obviously being in the
specimen’s axial direction. The axial stress o (force/initial area) and dilatation were mea-
sured experimentally over a wide range of constant axial strain rates (400:1), pressures (0
to 800 psi) and temperatures (-40C to 25C). Figure 1 shows the effect of different constant
pressures on the stress-strain and dilatation-strain response curves.

The composite constitutive model is assumed to be that of a linear elastic material, but with
pseudo strains in place of physical strains, as predicted by the correspondence principle.
Thermal expansion strains €r are neglected. For the particular problem at hand it is
convenient to write the constitutive equation in a form for which the axial pseudo strain
e and pressure p appear on the right side and the axial tensile stress o (above that due
to the pressure) and pseudo dilatation are on the left side. Then, the stress-pseudo strain
equations are

o= C’11€H + émp ’UR = é12€R + é22p (11)
The symmetry of éij follows from the fact that o and ¢® as well as p and v® are work
conjugates for an elastic material. As a result of this symmetry, we may construct a
so-called pseudo dual strain energy function,
T sl il ot il :
Wp = ;Cn (6 ) + Clae"p + 5Co2p (12)
2 2
Obviously,
o =0Wp/de?, v =0Wp/op (13)

The material is thermoheologically simple, so that the hereditary integrals for pseudo
strains are based on Egs.(2) and (3).

The coefficients C’ij depend on the damage, which we have found requires the use of two
damage parameters or internal state variables, S; and S,, say. Evolution laws of the
following form are used

Sy = dSy/dE = f1(S) (‘8;5{[))&1 when S, #0 (14a)
1
8o = dS,/dE = f>(S2) (-‘98%) ’ when S, #0. (14b)

where, for the particular material studied, @; = 6 and as = 4.5.

Observe that the same reduced time is used in Eq.(14) as in Eq.(3). Namely, d§ = dt/ar,
where ap is the same as for the linear viscoelastic functions E(£) and D(£). That this
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is possible appears to imply the intrinsic viscoelastic behavior and microcrack growth
are associated with the same physical rate mechanisms, as reported previously (Schapery,
1978). The form of Eq.(14) is motivated by the power-law growth behavior of macrocracks
(Schapery,1978). The quantity —O0Wp/8S; is a so-called thermodynamic force, which is
pseudo energy release rate when S; is crack area; the use of pseudo energy is motivated
by viscoelastic crack growth theory (Schapery, 1984). By redefinition of S;, the positive
factors f; may be eliminated, as done in the earlier work. We should also add that it was
found unnecessary to use threshold values of —OWp/8S;, below which S; vanishes. It is
believed the very high stress concentrations due to the high filler volume fraction initiate
microcracking at very low applied axial load.

The way in which the C‘i]‘ depend on S; is given by Park and Schapery (1996). Here, we
observe only that

Chi'—@n (51) C(5); Cis ='Ci(81); Coa = C (1) (15)

Under very high pressures (> 800 psi), v ~ 0 and Ciz >~ Cop =~ 0. For this case S; ~ 0
and the Poisson’s ratio is essentialy 0.5. The damage is associated with shearing in this
case, as accounted for by S;. The stress-strain curve in Fig. 1 at 800 psi reflects changes in
only C(S;). The behavior of Cj;(S1) is similar to that predicted from a micromechanical
model for opening-mode microcrack growth in a highly-filled rubber (Schapery, 1991); in
this case S, is a function of the number and size of the microcracks (which are responsible
for the dilatation), such as that observed in Fig. 1.

Equations (11)-(14) are in good agreement with all of the experimental results for constant
strain rate loading. Dual strain rate tests were used to further evaluate the model. Figure
2, from Park and Schapery (1996), shows that there is good agreement between theory
and experiment. The present model was extended to three-dimensional behavior by Ha
and Schapery (1996) using only the material functions and parameters in Egs.(11)-(14) by
assuming the material is locally transversely isotropic, with the current maximum principal
stress defining the axis of isotropy. Good agreement between theory and experiment for
load-displacement data and strain distributions in rectangular strips with holes and cracks
was found. In these tests, specimens were clamped along their long edges and loaded by
different constant displacement rates.

APPLICATION TO TRANSVERSE CRACKING IN LAMINATES

A common form of damage in laminates of continuous fiber-reinforced plastics is transverse
cracking. Figure 3 illustrates these cracks, which are normal to the (x; —x2) ply-plane and
extend in the z,-direction parallel to the fibers (normal to the page). These cracks often
form suddenly in multi-directional fiber laminates at loads that are well-below ultimate
values for the laminate. In standard tensile specimens, after initiation they grow quickly
to the full width of a specimen. These cracks are important because they often precipitate
other types of damage, such as fiber breakage in adjacent layers and delamination. There
are many publications on this subject (e.g. Friedrich, 1989) with most dealing with time-
independent behavior. Time-dependent effects are described by Moore and Dillard (1990)
and Schapery and Sicking (1995). Here we shall discuss only the problem of determining
the effective transverse modulus Fs of a homogenized layer with transverse cracks and the
evolution equation for these cracks. The average spacing of these cracks diminishes as the
loading is increased, and thus 2a in Fig. 3 (representing the average spacing) is a decreas-
ing function of time. When the effective modulus FE, is determined from theory or experi-
ment, and is expressed as a function of crack density, 1/2a, or normalized crack density,
8 = h/a, it is found to be somewhat sensitive to the adjacient layers (such as their fiber
orientation and the number of plies). However, Schapery and Sicking (1995) found that
this is not the case when F» is expressed as a function of the work/volume, S, for creating
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these cracks. For a linear composite, this work is the shaded area in Fig. 4; the bottom
dashed line is not necessarily the unloading line. It should be emphasized that this work of
damage is not simply equal to the critical energy release rate times the total crack surface
area. Typically, most cracks initiate at defects that are small compared to layer thickness
and then grow dynamically until they reach the free edges of the laminate and span the
full layer thickness. Thus, the shaded area is greater than what one may calculate from
quasi-static crack growth.

Here, we extend the earlier study (Schapery and Sicking, 1995) by giving a simple an-
alytical demonstration of why E,(S.) is insensitive to the adjacent layers for an elastic
composite, and then show that this insensitivity can be expected to apply in certain cases
to viscoelastic composites.

By definition, S, is given by (cf. Fig. 4),

Sp= /: Ey(B') de — %Erz (B) (16)

assuming that the layer is subjected to simple tensile stress normal to the fibers. Here,
E;, (B) is the transverse modulus for the homogenized unidirectional layer. It is shown only
as a function of normalized crack density, but it also depends on parameters of the adjacent
layers. In order to predict S, from Eq.(16), one needs a relationship between 5 and the
strain e. The average transverse strength o of unidirectional specimens has been found
in many cases to apply to the behavior of undirectional layers which are within laminates,
when the shear stress along the fibers is not large. Namely, a transverse crack initiates
when the internal normal stress o, reaches o;. New transverse cracks within a laminate
relax the normal stress o, between them, and so additional external loading is needed
to initiate further cracks. Although the crack density actually increases discontinously in
time, we assume here that the process is continuous.

We have used Hashin’s (1985) model for crossply laminates to predict E, (). For small
values of 3,

By = Ey —caf - (17)

where Fy = FE,(0) is the undamaged modulus and c; is a function of the thickness of
adjacent layers with fibers perpendicular to the layer with transverse cracks. Substitution
of Eq.(17) into Eq.(16) and then evaluating the latter equation we find for 0 < e— €r << 1,

Ey/Exp=1-5./W, (18)
where

1
Wo = EEQ()G? (19)

and €; = 07/ Fy are the strain energy density and transverse strain for a unidirectional
layer when oy is equal to the strength oy. It is seen that Eq.(18) does not depend on the
adjacent layers. Direct calculation shows that E; is only slightly dependent on the adjacent
layers for even high crack densities.

Figure 5 from Schapery and Sicking (1995) illustrates the behavior of e, = Ey/Fy, as
found from experiment and theory, when plotted against S.. Observe that €. is practically
linear in S, as in Eq.(18), for e, > 0.4 (corresponding to § < 0.4). At high crack densities
the experimental values fall below Hashin’s model, apparently due to local delaminations
at the tip of the transverse cracks, which his model does not account for. In any event,
S. serves as an excellent correlating parameter for three significantly different laminate
constructions, all the way out to specimen failure (by edge delamination). In applications
requiring the prediction of S;, one uses the equation (Schapery and Sicking, 1995),
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8S. ~
where W is the strain energy density of the homogenized layer.

=il (20)

lor these fiber reinforced plastics, the elastic-viscoelastic correspondence principle as de-
scribed above does not apply directly, as the fiber deformations cannot be neglected. How-
ever, the relatively high axial fiber modulus leads to an approximation which enables an
cquation like Eq.(8) to be applied for cross-sections normal to the fibers. As described by
Schapery and Sicking (1995) this leads to a correspondence principle that can be used in
predicting transverse cracks and their effect on the homogenized viscoelastic behavior of
unidirectional layers. For example, in Fig. 4 and Eq.(16), the strain is to be replaced by
pseudo strain, using the linear viscoelastic relaxation modulus Ex(€) for the undamaged
state to calculate pseudo strain. This transverse pseudo strain is,

1
CR = ﬁ{EZOdE} (21)
where EZ is the reference modulus.

As a final topic, we show that in certain cases a simple modification of the elastic analysis
cnables the elastic softening function e.(S.) and Eq.(20) to be used for viscoelastic behavior.
Using the correspondence principle, we may write the transverse stress midway between a
pair of transverse cracks in the form

Om = frm (B) Ete® (22)
where f,(8) may be found from Hashin’s (1985) analysis for elastic crossply composites.
The function fn decreases monotonically in G, with f,(0) ~ 1. That the transverse
cracking occurs locally when o, = o, as discussed above for the elastic composite, leads us
to assume that the relevant critical initial defects are microcracks that are small compared
to layer thickness and are distributed uniformly over distances as small as the spacing
between the closest transverse cracks realized. For the case of rate-dependent crack growth
we assume for simplicity that these very small defects are penny-shaped, with a radial
growth rate of @ ~ KJ, where K is the stress intensity factor for an isolated crack; this
representation is equivalent to using an energy release rate or J integral based on a pseudo
strain energy. Inasmuch as K; ~ o, and assuming ¢ >> 1, we find for a monotone
increasing € that a given microcrack becomes unstable (and grows quickly into a full

transverse crack) at the (nondimensionalized) time £, where

T =GP (23)

Also, p = 1/q and Cy is a constant; when ¢ — oo, this result reduces to the strength
criterion used earlier. In view of Eq.(22),

Cyt™® = fm (B) B ? (24)

where €# is the transverse strain for which a transverse crack pops-in at the time ¢.

The relationship between S, # and ¢ may be found by solving Eq.(24) for ¢/ and substi-
tuting it into Eq.(16), where Eff = E,(0),

Gl T df 1
S = — (k) | [B(8) 1% (8) Sodp + 55 8) S5 ()

E¢ J dg 2
This result is formally the same as for an elastic material, with E5(8) from elasticity theory,
except S. = S.t% appears in place of S, and Cfy replaces of. Thus, the results in Fig. 5

_E

. (25)
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apply to a viscoelastic composite if S is replaced by 3,. Inasmuch as e, = e.(S.), Eq.(20)
for predicting the transverse cracking now becomes

OWR ~op
— = —t (26)
0S.
where WE is the strain energy density in terms of pseudo strains. This equation implies

that for a given state of pseudo strain, the extent of transverse cracking increases with
increasing time, as expected.

CONCLUDING REMARKS

Viscoelastic behavior of polymer composites often exhibits a considerable amount of nonlin-
earity. Here, we have considered only that nonlinearity which is due to damage growth. The
experimental results on particle-filled rubber provide considerable support for the approach
used. Furthermore, the predictions of transverse cracking in laminates are encouraging in
that they indicate possible simplifications can be achieved in material characterization by
appropriate choice of variables, viz. pseudo strains and S, for the measure of transverse
cracking. What is needed at this time are experimental studies of viscoelastic laminates
that can be used to assess existing models and guide further theoretical development.
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