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Abstract

Extending the dimensional analysis of Mott on dynamic crack
propagation, we have derived the model equations of dynamic fracture
of brittle materials which take account of the fracture surface
roughness. This equation predicts the oscillation of the crack
velocity when the fracture surface roughness increases, in qualitative
agreement with the recent experiment of Fineberg et al. [Phys. Rev. B45
(1992) 5146].
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1. Introduction

Although numerous works have been done on dynamic crack
propagation in brittle materials for many years, the mechanism that
govern the dynamics of cracks are not well understood. One of the
basic difficulties is that cracks do not attain the limiting velocity
predicted by linear elastic theory [1]. Another difficulty has been
how to explain characteristic sequence of the fracture surface known
as "mirror, mist and hackle". Namely, an initially smooth and mirror-
like fracture surface begins to appear misty and then evolves into a
rough hackled region [2,3]. Recently Fineberg et. al. performed the
refined experiment of dynamic crack propagation in brittle plastic,
PMMA [4]. Improving the resolution on the measurements of the crack
velocity , they have revealed the existence of the critical velocity
at which the velocity of a crack begins to oscillate. They have also
found the strong correlation between the oscillation of the crack

velocity and the fracture surface roughness. This experiment is
extended further and the cause of the oscillation is found to be the
attempted local crack branching [5]. Besides, the fracture surface

roughness, w, defined as the rms deviation of the fracture surface
height from it's mean value, is observed as W < L' ; { = 0.7, where L is

the measurement scale. The value of £~0.7 for the "“roughness
exponent", ¢ has been conjectured to be universal in brittle two-
dimensional materials [6]. The experimental results described above
have also been found by the computational molecular dynamics for two
dimensional triangular solids with mode I leading [7]. In the
molecular dynamic (MD) simulation, in which Lennard-Jone's 12:6
potential is used for interatomic forces, the origin of the erratic
velocity oscillation is observed to be associated with the stair-step
branching and connecting of regions of failure at and preceding the
crack tip. This oscillating zigzag motion of the crack tip is found
in both of the MD simulation with and without dislocation emission.

Beside, the width w is observed to scale ags W = L'; { = 0.81,

Taking account of these results on dynamic crack propagation in
mind, various theoretical attempts have been made. For example,
Langer [8] has studied models of crack propagation with different
dissipation mechanisms, such as velocity dependent friction and Kelvin
viscoelasticity. In these models the dissipative mechanism acts in
the bulk of the material and steady state crack pPropagation is
realized. Recently Langer and Nakanishi [9] have introduced a new
model of crack propagation in which novel viscous dissipation acts
only on the fracture surface. The stress field at the crack tip was
found to be nonsingular even without applying the usual Barenblatt

condition. The basic idea in these theoretical analysis is the
recognition that the essential dynamic degrees of freedom are
neglected in the conventional dynamic fracture mechanics. In other

words the idea, that it might be possible to determine the direction
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and perhaps even the speed ofcrack extension by examin;nglinlthZe
singular stress fields in the neighborhood of a geometrically s o]
i i stioned.

P tl?ﬁ ;z;iﬁZn II, we will analyze the experimenta} results of
Fineberg et al.[4] in terms of the extended Mott's ana}y51s Flo], from
which the model equation for the velocity of a grack 1; derlved: Tge
model equation predicts that the crack velocity oscillates if the
fracture surface becomes rough and the the exce;s fracture energy
obeys the equation derived by the Hamiltonian which corgegpondsT;o
Ginzburg-Landau Hamiltonian of the second order pbase transition. e
direction of further development is given in section III.

II. Analysis of Dynamic Crack Propagation

We consider propagation of a centrally located th?ough crack in
an infinitely large elastic plate subjected to a time-independent
uniaxial tension perpendicular to the plane of a crack. The energy
balance equation of a crack is

AUext_dUs , dUx , 4D

dt dt dt dt (1)

where t is time and Uext is the work done by the externallloags. Us is
the elastic component of the stored energy. Uk is the kinetic energy
and D is the sum of all the irreversible energies such as surface

ic work and viscous dissipation.
energy,lﬁliiZZ; ;; estimate the effect of kinetic energy,‘Mott [11]
assumed that the stress and displacement fields for dynamic problem
are the same as those for elastostatic problem with the same crack
length. The kinetic energy is found to be

kpazao?
o 282 (2
where k is a constant which depends only on the Poisson's ratio and
P is the mass per unit area of the plate. The thickness of.the plate
is taken to be a unit length. E is Young's modulus.and ? is the
applied stress. The dot in Eqg. (2) represents derivative with respect

to time.
From the elastic solution of the plate under constant stress at

q 18) -U, 3
infinity, for the change in the quantity ~ext ~S due to the existence
of a crack of length 2a, we may write

252
Uam‘Us=HgEé‘ (3)

Substituting Egs. (2) and (3) into Eg. (1), we find
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JTUH4aa)~1+li§3=o
CA Go &

(4)
where crack resistance R and the energy release rate Go at a=a, are,
respectively, defined as

oD 2
R=—, Go:?’?‘?_,a_o
da E
(5)
C in Eg. (4) is defined by the velocity of longitudinal wave, Ci, and a
constant k as
c=\/ 2?” ¢ (cl=\ / %)
(6)

énalyzing the lumped mass spring model of a crack,
1s equivalent to Eg. (4) is derived by williams [12].
Let us define the following normalized quantities,

the equation which

a ct da

= V=e—

a, a, dr
(7)

and rewrite Eq. (4) as

dv 2
a—-=1-v°-—
dr C(Go

(8)
for the case RzGO, which dis

re,

We obtain the following solution of Eg. (8)
the Griffith's critical condition for fractu

v=1.L1
a
(9)

This solution is often used to explain various different

experiments. Assuming that the solution of Eqg. (8), still holds for
R#G

the case 0, we rewrite Eq. (8) as follows,

dv

EE=(1'V)2(V‘\p)
(10)

R

=—-1

L% G,
(11)

e ——
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-1
Notice here that the following equation can be derived from V=17¢

d_vz_-(l—v) 2V

dt 1:2)

It is reasonable to replace Go in Eg. (11) by the surface energy
R=2 A ;
Yo since the fracture surface is smooth initially as observed in

the experiment [4]. Thus we find that ¥ remains to be zero as far
as the fracture surface is in the mirror state. As the fracture
surface evolves from mirror to mist or hackle, v becomes positive

since it requires more energy than ZYO and the crack resistance R
increases. When the fracture surface remains to be in a mirror state,
the crack is accelerated according to Eg. (12). The crack is
decelerated when the condition, e WA it satisfied, which is
realized by the rough fracture surface.

Taking account of the existence of the critical crack velocity,

VC, we find that the behavior of Y closely resembles with that of the
order parameter, widely discussed in the second order phase transition
[13]. Instead of the temperature in the phase transition, we use the
crack velocity for dynamic fracture as a control parameter. Making
use of Ginzburg-Landau Hamiltonian [14], we find the equation for ¥
as follows,

= v, (v-v,) %sgn (v-vo) hyp-b,y’
dr (13)
where 8gn (v-v) is the sign function. The term {'} 4in R.H.S. of
Eqg. (13) is chosen referring to the experimental result [4]

Egs. (10) and (13) are the phenomenological equations for dynamic
fracture. The terminal velocity of the crack are derived as follows.
The steady state solution, %0, of ¥ can be obtained from Eq. (13),

by,
T VEY) V2V,
1

Lo}

Y, = (14)

0 NAS
The crack progresses when the condition, R=G is satisfied, where the

quantity G is the energy release rate. Thus Y defined by Eeyi(1a)
represents the excess energy release rate for fracture and it
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corraesponds to the fracture surface roughness. The velocity
dependence of the fracture surface roughness is experimentally
measured and Eg. (14) is in accord with it. Substituting the value of

Yo for the case vave into Eq. (10) and setting (dv/d1)=o,
the terminal velocity, V., of the crack as

A/bo/bl
Vs Ve
,/bo/bl il
(15)

where we assumed the condition

we find

b—°>1
2 (l6)

The quantities, v and ¥, could oscillate depending on the choice
of the parameters as is shown in Fig. 1, which is obtained by
numerically solving Egs. (10) and (E3). Fig. 1 corresponds to
oscillation of the crack velocity and the fracture surface roughness
observed in the experiment. Thus, the phenomenological equations (10)
and (13) qualitatively agree with the experimental results as
discussed. We will not get involved in details of the solutions of
Egs. (10) and (13) since we did not theoretically find the expression

for 8 =md b, at this stage.

Fig. 1. Numerical result of Egs. (10) and (13) for the case
b, = 40, b, = 3.7 and Vo = 0.2

The analysis given so far is only based on analogy of Egs. (10)
and (13) with the second order phase transition motivated by the
experimental observation of the existence of a critical velecity [4].
We now give plausible argument on the physics associated with Egs.
(10) and (13).

The importance of the craze on dynamic crack propagation in PMMA
has been known [15]. When a crack propagates at low velocity the
length of the craze extending ahead of the crack is small. As the
velocity of a crack increases the craze grow to a larger extent.
Cotterell noted this growth of the craze as a self generating process
[15]. If the length of the Craze ahead of the crack grow sufficiently
large, the brittle plastic, PMMA, responds elastoplastically. Then a
crack velocity decreases and the stress field at the tip of a crack
increases. Thus more energy will be expended in this phase of crack
propagation. As the stress at the crack tip increases furthermore,
the material restores it's brittleness and the velocity of a crack
increases. The transition velocity of the response of the material

" «v\%
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for dynamic crack propagation discussed above can be regarded as the
critical velocity which appears in Eg. (13).

III. The Direction of Further Development

What we could conclude at this stage is to point out that the
conventional theory of dynamic fracture is based on "erroneous belief"
that the crack velocity is only determined by the global energy
balance equation, extending the case of the static fracture. This is
also recognized in the recent theoretical development on dynamic
fracture as discussed in section I. According to author's opinion,
however, the recent experiments suggest that the erratic zigzag motion
of the crack tip does not depend on such detailed dissipative
conditions as studied by theoretical physicists [8,9]. Although the
present results shown in section II look too much artificial, the
basic theoretical structure would remains in the way as it stands.
Extension of the present work will be presented in the conference.
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Fig. 1. Numerical result of Egs.

b, = 40, b, = 3.7 and v,

and

for the case
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