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ABSTRACT

Impact produces high stress waves leading to fragmentation of brittle materials such as ceramics.
The main mechanism used to explain the size variation of fragments with stress rate is an
obscuration phenomenon. When a flaw initiaies, the released stresses around the crack prevent
other nucleation in an increasing zone. After a presentation of a statistical approach, the
evolution of the number of nucleated flaws is derived. Using a Weibull model, some numerical
results and an analytical lower bound are proposed. The number of fragments is found to increase
with the stress rate and the Weibull parameter.
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INTRODUCTION

Bilayered armor with ceramic as front plate and steel as back plate has been used for several years
to improve the efficiency of light armor (den Reijer, 1991) or medium armor (Briales er al.,
1995). The high hardness of ceramic materials favors projectile failure (Orsini and Cottenot,
1995) and spreads the kinetic energy on a large surface of a ductile back face. The weight of the
armor is then reduced in comparison to an armor made of steel only. In most impact
configurations, the stress field associated with impact can be assumed to be spherical and an
analogy can be made between real impact failure morphologies and soft recovery experiments
of divergent spherical stress load (Tranchet, 1994). The first result is that stress waves can
produce damage both in compressive and tension modes in two different locations in the ceramic
(Fig. 1). Damage ini compression is produced near the impact surface when shear stresses reach
a threshold value which can be dependent on pressure and strain rate. In the bulk of the ceramic,
damage in tension is observed when the hoop stress induced by the radial motion of the impacted
ceramic is sufficiently large to generate fracture in mode I initiating on micro defects such as
porosities or inclusions. With a projectile velocity under 1000 m/s, no significant perforation can
he observed while damage grows. One can then uncouple the damage evolution phase from the
vomplete penetration phase. The complete perforation is dependent on the way the ceramic
fractures in terms of damage location and evolution, and in terms of anisotropic behavior due
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to cracking. The present study deals with the generation of damage in ceramics due to the tensile
stress state that follows the compressive stress wave induced by impact.

Secondary Cracks
Damaged Zone
(Tensile mode)

Shock Wave

Damaged Zone
(Compressive mode)

Fig. 1. Morphology of damage in a ceramic specimen during impact.

Orientation of cracks given by post-mortem observations (Tranchet, 1994) are consistent with
a generation of damage by the tensile hoop stress state that follows the longitudinal compressive
wave. Since most of the initiated cracks do not exceed a few millimeters, one can assume that
the crack tip cannot follow the cracked front, i.e. the velocity of the former is less than the
velocity of the latter. A crack initiates when the tensile stress reaches a threshold value
(depending on the size and shape of the defect) and stops because of other defects nucleated in
front of it. Damage generation can then be described as a local problem, depending on the local
stress state.

FRAGMENTATION ANALYSIS

Many defects do not cause any cracks to nucleate during the increase of the tensile stress. In this
paper a model of fragmentation in brittie materiais is proposed. It takes into account exciusion
phenomena based on an analysis of the way the stresses are released around a crack and obscure
other defects. Since all the cracks nucleate only for an increasing tensile stress, decreasing or
stationary global stresses will not be considered in further discussion. When a fracture initiates,
the local stress state is modified by a concentration of shear stress near the crack tip and normal
stress relaxation at the middle of the crack. In brittle materials such as ceramics, the velocity of
the crack tip is not negligible with respect to the wave celerity and the zone affected by fracture
is a complex function of time, crack velocity and stress wave celerity. To understand why a crack
nucleates, one has to model the interaction of the stress affected volume and other defects that
should nucleate. The behavior of a flaw around a nucleated one can be described by three
different cases:

1 the flaw is far from the nucleated one and the stress state is not affected,

2 the flaw is in the affected volume but the local tensile stress still increases, i.e.
initiation may occur,

3 the flaw is in the affected volume and the local tensile stress is decreasing, i.e. no
crack is emanating from this potential initiation site.
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To make the analysis tractable, only volumes defined by cases 1 and 3 will be considered, the
volume defined by the case 2 is assumed to be insignificant in this problem. Furthermore, the
stress state in the material is assumed to be homogeneous (i.e. the direction of the maximum
principal stress is constant) which allows a unidimensional expression of tensile stresses. If the
stress gradient is small, the space dimension can be uncoupled from the tensile stress (or time)
dimension and flaw nucleation can be represented on a time — space graph (Fig. 2). The space
location of the defects are represented in a simple abscissa (instead of a three—dimensional
representation) of an x—y graph where the y—axis represents the time (or stress) to failure of a
given defect. The first crack nucleation occurs at time T (corresponding to a stress o[T]) at the
space location M and produces an "obscured volume” V(T) increasing with time. At time T,
(corresponding to a stress 6[T2] > o[T;]) a second defect nucleates in a non—affected zone and
produces its own obscured volume. The third and fourth defects do not nucleate because they are
obscured by the first and both first and second defects, respectively. The sum of all the obscured
zone has been proposed by Kipp and Grady (1979) to define the volume in which no crack can
occur. Because different obscured volumes may overlap (i.e. a flaw can be obscured by one or
more other cracks), its preferable to define the conditions of non—obscuration for a given defect
by examining the reverse problem. For a given flaw D a non—interaction zone can be defined in

which a defect cannot obscure D (Fig. 3) and the interaction zone in which a defect will always
obscure D.

Obscured Flaws
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Fig. 2. Fragmentation and obscuration phenomena.
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Fig. 3. Schematic of the interaction and non—interaction zones.
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The flaw distribution can therefore be split into two parts and the average number of broken flaws

can be written as

wp(LV) = u(T,V) = puo(T, V) (1)
where u(T,V) denotes the mean number of flaws that may break in a volume V for a stress greater
than or equal to o(T). The subscripts indicate the effectively broken (b) flaws, the obscured flaws
(0), and the total number of flaws (T). During a time (or stress) increase from T to T + AT, the
number of broken flaws in a volume V will increase by AT ou,(T,V)/dT. New cracks will initiate
only if the defect exists in the volume V and if no crack is broken in its interaction zone

afub(T: V) A a/lT(T, V)
Cri e (2
where Py, is the probability that no defect was broken in the interaction zone. The probability

of non-interaction can be split in an infinity of independent events of probability 4P,,(t) defined
during a time (or stress) increment AT. With a small time increment, AP,,(t) is defined as follows

t
APyo(t) = 1 — Il/%gt’—m Vi, NDAT with t<T (3)

where Vj(t, T) the interaction volume at t for a defect that should break at T. Thus Ppo is given
by

7
Ppo(T) = [ [APno(t) (4)
t=0
i
PoolT) = Exp[Zln(l - el DRy T)] )

P,o(T) = Exp

0
T
a:u (t’ V) V'(t’ 7)

0

The evolution of uy, (T, V) can now be expressed as the solution of a differential equation

T
WATV) _ TV | J wENVen | {MT ==

T aT ot % u(T=01vy=0 *
0
If the brittle material is homogeneous, the w(T,V) variables can be written as follows
w(T,V) = VA(T) (8)

where A(T) is the mean nuinber of nucleated flaws per unit volume. In order to make Eqn. (7)
dimensionless, new definitions of time, interaction volume and mean number of nucleated flaws
per unit volume are chosen (the subscript “c” denotes characteristic values of variables)
3 <Fo A(t — AAt i Vi,
£ Bo=42 5 =40 ; pen-XeD
AV =1 (10)
The characteristic density Ac = Ap(t:) and volume V. = V;(0, t.) are both defined from tc which
can be described as the time for which one defect is broken in a volume equal to the interaction

volume (see Eqn. (10)). The dimensionless differential equation can then be obtained using
Eqgns. (7-10)

(11)

ar dT

2 —
0
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At the beginning of the loading, no interaction occurs and therefore 1,(T) = 2(T) and as more
and more defects nucleate Z,(T) < I(T). It is expected that the number of broken flaws saturates
when T — o even though the total number of flaws may approach infinity.

APPLICATIONS

The static description of brittle materials can be given by a two—parameter Weibull model. The
mean number of flaws per unit volume is then assumed to follow a power law function

m
1o
= e 12
A0) A ( S0> (12)
where m is the Weibull modulus and S, the scale parameter relative to a volume V.

One can notice that if the interaction volume is equal to the entire volume of the structure (i.e.
the loading rate is very small and the ratio Vi/V = 1), Ppo(T) defined by Eqn. (6) is equivalent
(o the probability that no flaw will break in a constant volume V for a stress less than or equal
to o(T). Eqn. (6) can then be expressed as

Puo(T) = Exp| — (T, V)] (13)
and is equal to the probability of finding zero critical flaws in a volume V (i.e. PIN(T,V) = 0)).
This result is in accordance with a Poisson model describing the probability of finding n broken
flaws in a volume V

T’ n
PIN(T,V) = n] = [”b—(mV)—}ExP[— #y(T, V)] (19)

The probability of non—interaction becomes the complement of the failure probability
Py =1 = P[N(T, V) = 0] which can be modeled by a classical Weibull law

m
= Al S A e
Pf— 1 Expl: 7 (Sa> } (15)

Usually, the interaction volume cannot be assumed as a time—constant variable and since no
analytical expressions are available for V;, an approximation will be proposed.

Both experimental and analytical approaches show that the velocity of cracks in brittle materials
rapidly reaches a constant value depending on mechanical parameters such as the longitudinal
wave celerity and Poisson’s ratio (Bluhm, 1969 ; Freund, 1972). Some approximations can then
be made on the interaction volume Vj(t,T) to make the following calculus easier. First, the shape
of V;j is supposed to be constant, i.e. all the interaction volumes are self-similar and can be written
as

Vit,T) = S|[L(T - t)]3 (16)

where S is a shape parameter, L.(T-t) is a characteristic length which is a function of the crack
propagation time T — t. Second, L. is assumed to be linear with the crack length, i.e. it can be
written as proportional to the sound velocity. The time evolution of V; can therefore be taken as

Vt,T)=SK3C3(T -1% ; 0=<t=T (17)

where k is a real number varying within the range [0 ; 1], C is the longitudinal stress wave
velocity and kC(T—t) the characteristic length function. In the following, only dynamic loadings
will be considered with a stress rate do/dt = ¢ assumed to be constant. Eqn. (12) becomes

Ay =0 L i ey L (18)
VST

The characteristic time t; can now be expressed by solving Eqn. (10)
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0.'m Sita m+3
tc = Sk°C 19
c (Vo S (19)
The dimensionless differential equation can be rewritten as
— T —
dA = dA,(f) = i i
b(_n =mT" 1Exp - j bO(T —03dr| with 2 (T=0)=0 (20)
ar dt
0

No analytical solutions can be proposed for this equation and numerical simulations have to be
used. In all the results presented in Fig. 4., the dimensionless number of nucleated defects reaches
a maximum value which is only dependent on the Weibull modulus. This result can be shown
by analyzing Eqn. (20). The saturation phenomenon is consistent with the description of the
nucleation mechanism which is given as a competition between nucleation of defects and stress
release. The fragmentation process saturates when all the stresses are released in the structure,
i.e. no defect can break anymore.
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Fig. 4. Numerical simulations of number of broken flaws as a function of time for
three different Weibull moduli m.

Furthermore, one can observe that the number of nucleated flaws increases with the Weibull
modulus. An explanation to this phenomenon can proposed using Eqn. (12). With a high Weibull
modulus m, the number of defects will increase dramatically in a small time step when the stress
becomes greater than S,. Because of the time dependence of the saturation mechanism, many
defects nucleate before any significant saturation and the material will be fully fragmented. If
m is small, there is much more time between two crack initiations. The first nucleated defects
can then obscure others before their own nucleation and only few defects eventually nucleate.

To give a lower bound to the numerical results, the number of nucleated defects cannot be greater
than the number of initial defects (see Eqn. (11))
A (T) = ANT) (21)

Therefore a lower bound to the increment of broken defects can be obtained
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ai (T 5 g
m o = [(m T I)m + 2)(m + 3)] L

The dimensionless lower bound to the number of broken flaws at saturation can be derived and
is only dependent on the Weibull modulus m

m+3 6 m+3 (29

where I" is the Euler function of the second kind. A comparison between numerical results and
the lower bound is given in Fig. 5.
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Fig. 5. Evolution of the normalized saturated number of broken flaws
as a function of the Weibull modulus.

The difference between the lower bound and the numerical simulations does not exceed 10% in
the range [2 ; 60]. The complete result can be written using Eqns. (10, 17, 18, 23)
A

Ap(®) = f(m)(—l/(.z;,nm) e s
o
(24)

m+3 6 m+ 3

The number of broken flaws at saturation is proportional to a power function of the stress rate
. This result can be compared to the one obtained by Grady (1982). In his approach, the
fragmentation size is controlled by the competition of the energy created by the fragment surface
and the use of local kinetic energy. Assuming that all the fragments have the same diameter d,

Grady shows that
2/3
20K,
i [\/— IC] % eiw2/3 (25)

pCe
where Kjc denotes the fracture toughness, C the sound velocity in the solid, ¢ the linear strain

with f(m) = 1 [(m + D(m + 2)(m + 3):|ﬁr( - )
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rate and p the material density. Equation (25) was successfully applied to predict the stress rate
dependence of the fragment size of oil shale. The diameter d can also be written using the
density A,(«) representing the average number of nucleated flaws equal to the number of
fragments

-1/3 A
d=[(=)] "« () (26)
Because of linearity, the evolution of the fragment diameter according to stress or strain rate can
then be comparable for the above mentioned approaches if the Weibull modulus is equal to 6 (i.e.
m/(m+3) = 2/3) which is an acceptable value for oil shale (Kipp and Grady, 1978).

CONCLUSIONS

A statistical approach has been proposed to describe the stress rate dependence of the
fragmentation mechanism. The saturation phenomenon is illustrated by numerical results and
leads to a prediction of the total number of broken flaws. An analytical lower bound is obtained
and represents a good approximation of the exact solution. The latter is useful to describe the
evolution of broken flaws with the material parameters. The proposed approach can be used to
develop a damage evolution law in tensile mode for impact simulations on ceramics.
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