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ABSTRACT

3D Dynamic interaction of two circular cracks in an infinite medium under impact loading
is investigated. A time-domain boundary integral equation method is used for calculating
the time dependence of crack opening displacements and subsequently the dynamic stress
intensity factors. Numerical results are presented for various crack configurations including
the macrocrack-microcrack interaction problem.
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INTRODUCTION

Most of all investigations on the dynamic behavior of stationary cracks are concentrated
on 2D problems. Recently more attention has been paid to the 3D respose of cracks to
dynamic loading. One reason for this is the development of suitable experimental and
numerical methods combined with the increasing computer power. Another is the neces-
sity of 3D investigations for a detailed understanding of the dynamic failure behavior of
cracked structures. As examples, 3D-FEM studies of test specimen under dynamic load
have been carried out by Zehnder and Rosakis (1990) and Aoki and Kimura (1993), partly
in order to get an insight in effects such as the so-called incubation time. Other papers
are concerned with the fundamental problem of cracks in an infinite region (Chen and Sih,
1977; Shindo, 1984; Sladek and Sladek, 1986; Hirose and Achenbach, 1989; Zhang, 1991;
Zhang and Gross, 1993a,b; Xiao et al., 1995; Wen et al., 1996). In these investigations
only a single crack of a circular, rectangular or elliptic shape under dynamic loading is
considered.

Interaction of several or many cracks is of considerable importance for certain appli-
cations in fracture mechanics as well as for the constitutive behavior of solids like rock,
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ceramics or concrete. For the corresponding 2D problem a number of solutions exist for
the static and the dynamic case. Three dimensional crack interaction problems usually
are regarded as difficult and therefore only a few solutions are available for the static case.
They are concentrated on the interaction of two penny or ellipse-shaped cracks (Isida et al.,
1985; Fabrikant, 1987; Kachanov and Laures, 1989) and of penny-shaped cracks with the
straight front of a semiinfinite crack (Laures and Kachanov, 1991; Huang and Karihaloo,
1993). Till now, to our knowledge, no investigation on the 3D response of multiple cracks
to transient loading has been available in the literature.

In this paper the response of two parallel circular cracks embedded in an infinite elastic
solid under the action of impact loading is investigated using a non-hypersingular time-
domain boundary integral equation (BIE) method developed by Zhang (1991). The BIE is
solved numerically via a collocation method in conjunction with a time-stepping scheme.
The time-dependend dynamic stress intensity factors are determined for various crack con-
figurations. The results are discussed with special attention to effects induced by crack
interaction.

PROBLEM FORMULATION AND BIE

Consider an infinite, homogeneous, isotropic and linearly elastic solid containing two par-
allel cracks as depicted in Fig. 1a. The crack faces AL, AT are loaded by an impact —olt
induced for example by an incident transient wave. The main interest is directed to the
dynamic K-factors along the crack fronts.

Following Zhang (1991) and Zhang & Gross (1993a,b), the problem can be reduced
to the following non-hypersingular time-domain BIEs for the unknown crack opening dis-
placements (CODs) Au;(y, 7)
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where €, is the permutation tensor and E, is the elasticity tensor, which for an isotropic

Figure 1: a) Parallel penny-shaped cracks b) BIEM-mesh
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material is given by
qukl = /\6pq5kl = /L((spkéql + 6p16qk) ) (2)

with A and p being the Lamé constants. In Eqgs. (1) and (2) p is the mass density, d,q
the Kronecker delta, u§ and 0§ are the displacement and stress Green’s functions of the
uncracked full-space, see Zhang & Gross (1993a,b). The CODs are defined by

Ay, 7) =w(y € AT, 7) —w(y € A7, 7). (3)

Once they are calculated by solving the integral equations, all quantities at an arbitrary
internal point of the solid, such as the displacements, the strains and the stresses, can be
determined by use of the corresponding representation formulas for these quantities. The
dynamic K-factors along the crack fronts also can easily be determined from the standard
relations (here for a penny-shaped crack of radius a)

K;(0,t) Aug(r,0,t)
K@) b= 4(“1V_2”) lim = Au(r,8,8) b @)
Krr(6;t) o i (1 - v)Aug(r,6,t)

where Au, and Aug are the CODs in the polar coordinate system and v is Poisson’s ratio.
NUMERICAL SOLUTION PROCEDURE &

The BIEs (1) are solved numerically gy use of a collocation method in conjunction with a
time-stepping scheme. Applying the procedure described by Zhang & Gross (1993a,b) the
following time-stepping scheme for calculating the discrete COD-values is obtained

E
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d=1 s=1 f=1

where g=m —n+1, AL, = AZ",(m > n) and AD?, takes the form
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AZ is the area of the eth element with boundary 0Af, and m = t x n is a unit vector
normal to OAF tangent to A} and pointing outward, and t is the unit tangent vector to
OA7. Furthermore, k = cr/er with

A+ 24 m
cr, = i Cr = == 1%
p i Vo . (g

being the dilatational and shear wave velocity respectively. The auxiliary functions F, G,
H¢ (£ = L,T) and abbreviations Aijk, Bijk can be found in Zhang & Gross (1993a,b). In
(7) only a weak singularity arises which provides no difficulty for numerical integrations.

The BIEM-mesh used in calculations for penny-shaped cracks is shown in Fig. 1b. In
most cases a total of 336 elements has been used. For elements away from the crack fronts,
the shape function g(y) is taken to be unity (constant elements), while for elements in the
vicinity of the crack front, a specially designed ‘square-root’ crack-tip shape function is ap-
plied to describe the proper behavior of the crack opening displacement and its derivatives
at the crack front. In order to obtain better results the time step At should be selected
such that the dynamic K-factors can best be fit within some particular range of time ¢,
including t — oo, the static case. In this investigations the time step has been chosen as
crAt/a; = 0.1405 . ..0.1425.

RESULTS AND DISCUSSION

Calculations have been carried out for two coplanar cracks (f = 0), two stacked cracks
(e = 0) and two arbitrarily located cracks (f # 0, e # 0) under impact loads. For the
sake of brevity, results only for normal impact o H(t) are presented, with H(¢) being the
Heaviside step function. Poisson’s ratio of the material is taken as v = 0.29 or v = 0.3
in order to compare the stationary K-factors computed in this paper with static K-factors
available in the literature. For convenience, the following normalization is introduced

7 K;(6,¢) = K;1(6,t) _ Ki11(6,1)
Ki(6,t) = —2~ - ) _ K,
I( ) ) K] ) KII(Q, t) K2 3 K]ll(g, t) = ——K3 s (12)
where
K1=2m/gi ngigg i K %_1_21/2 i 13
o C-v)Q-v)" Vo S Hapa a0 (13)
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Coplanar Penny-Shaped Cracks

For two coplanar penny-shaped cracks under normal impact, the only nonzero stress in-
tensity factor is K. First, cracks of same radii a; = a; = a are considered. Due to the
symmetry, the K-factor distributions along the crack fonts of both cracks are the same:
Ki(61,t) = K[(62,t) with 6, = 180° — 6;. In Fig. 2 the normalized K;-factor is depicted
versus dimensionless time crt/a for two different crack distances e/a. The figures show
the general time-behaviour of the dynamic K-factors: immediately after the impact the
K-factor increases rapidly with time t. After reaching a maximum, K; decreases, then
increases again and oscillates around the corresponding static value. When ¢ tends to
infinity, the dynamic K-factor approaches to its static stress intensity factor.

v=0.29, e/a=2.001 v=0.29, e/a=2.1
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Figure 2: K-factors for coplanar cracks with a same radius

From the computations it can be seen that K;(6;,¢) at the crack tip point A (6; = 0°)
is larger than that at any other point along the crack front. To present the interaction
effect more clearly, Table 1 shows the maximum K-factors, the ‘stationary’ K-factors (at
crtse/a = 8.55) and the corresponding static K-factors at the three crack front points
A, B, C (61 = 0°,90°,180°). From the results it is observed that the ‘stationary’ stress
intensity factors and static stress intensity factors are in good agreement for e/a > 2.1.
The deviations in these cases are less than 2.5% what also can be taken as an indicator
for the accuracy of the calculations. When the distance between the two cracks decreases
the deviations between the ‘stationary’ and static K-factors become larger and larger,
particularly for the two nearest crack front points A. For e/a = 2.2, 2.1, 2.01, 2.001, the
deviations at A are 0.34%, 2.48%, 18.5% and 37.8%, respectively. But it also interesting
to note that for all results within the range of 22.5° < 6; < 337.5°, no matter how close
the two cracks are, the deviations between the ‘stationary’ and static K-factors are less
than 2.5%. This is also true for the crack distance e/a = 2.0005 whose numerical results
are omitted here for the sake of brevity. On the other hand, notable numerical errors in
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Table 1: K-factors of two coplanar penny-shaped cracks

ola 2.001 2.01 o 2.2

Point A B C 1A B o A s T e
/(’,"‘"‘ 219 134 1.30(209 1.33 1.30|1.70 1.33 1.30|155 1.32 1.30
R’,(t,t) 1.59 1.05 1.03|1.52 1.05 1.03|1.26 1.04 1.03]| 1.16 1.04 1.02
f(,"““c " [256 1.04 1.02(1.86 1.04 1.02|1.29 1.03 1.02 1.17 1.02 1.01
* normalized static K-factors given by Fabrikant (1987).

the computations appear along the crack fronts within the range of |6;| < 22.5° for closely
coplanar cracks. Reason is the strong crack interaction accompanied by high K-gradients
along the front. The errors can only be avoided by increasing the number of elements in
this region. With increasing crack distance e/a > 2.2, interaction effects become smaller
and smaller. The K-factor distribution then approaches that of a single penny-shaped
crack. As an example, for e/a = 0.5 the maximum K-factor at point A is K% = 1.39
while the corresponding result for a single crack is 1.31.
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Figure 3: Coplanar cracks with different radii a) large crack b) small crack

Now the radius a;, of the first crack and the crackfront distance d is held constant
(d/a; = 0.1) while the second crack is taken as smaller and smaller. Results for az/ay = 0.5
are plotted in Fig. 3 for the large and the small crack. The large crack observes an
interaction with the smaller one only in the crackfront vicinity of point A. The peak value
there is KM* = 1.43; along the crackfront farer away from A (e.g. points B, C) the
K(t)-curves are essentially the same as for a single crack. The interaction effect is more
pronounced at the small crack. A second peak value now developes at crt/a; ~ 3 which
can be explained by the emmitted stress peak from the large crack and the accompanied
wave speeds and travel distances: The farther a crackfront point is located from the large
crack the later the second peak evolves. The second peak partly might be higher as the
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first one. Indeed the maximum K-factor at the small crack arises at the second peak at
point A’: K7%* = 1.67 (note, the K-factor is normalized with its own static single crack
value)
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Figure 4: Macro-micro interaction of coplanar cracks a) large crack b) small crack

K-factor distributions for as/a; = 0.1 are shown in Fig. 4. This case can be regarded
as a macro-microcrack interaction. The large crack now is neglegible influenced by the mi-
crocrack. Within the accuracy of the computation, the K-curves for the points A, B and
C coincide with the corresponding curve of a single crack. The stress intensity distribution
of the microcrack is mainly determined by the macrocrack. The first peak has vanished
and only the second peak, induced by the macrocrack, appears at time crt/a; = 3, with
a maximum value of K?*® = 1.67 at point A’. The ‘stationary’ value at this point is
K;(ts) = 1.35, which approaches the corresponding static value.

Two Stacked Penny-Shaped Cracks

In this case K;; = 0 and two modes with the stress intensity factors K;, K;; are present,
which due to the axisymmetry are constant along the crack fronts. In addition, the K-
factors for both cracks are the same if the radii are equal (a; = as = a) and the cracks
are impacted at the same time. Fig. 5 shows results for this special case for different dis-
tances f. The dashed lines stand for the corresponding static K-factors given by Isida et
al. (1985), Murakami (1987) and Kachanov & Laures (1989). It can be seen that before
the disturbing waves from one crack arrives at the other crack, as expected, the dynamic
Kj-factors for the two crack problem are as same as those for the corresponding single
crack problem. When the wave front (essentially pressure) from the one crack reaches the
other crack front, it reduces the K ,-factors, compared with the corresponding single crack
problem. After the first peak they oscillate around the corresponding static values and
when t tends to infinity, they approach to their static K-factors. The different frequency
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Figure 5: Two stacked cracks with a same radius

of the oscillations, clearly seen for f/a =20 and f/a = 1.5 can simply be explained by
the multiple reflections (compression - tension) of waves running between the two cracks.

The dynamic K;;-factors are zero before the wave front from the one crack arrives at
the other one. Then this interaction induced wave loading leads to a rapid increase of
K. After reaching a maximum, they decrease and increase again, oscillating around the
corresponding static values and approaching them when ¢ tends to infinity. The different
oscillation frequency again is explained by the waves running between the two cracks The
computations show that the interaction effect on K; and Kj; decreases with increasing
crack distance f. For f/a > 10 the effect almost vanishes and the two crack problem can
be solved adequately by the corresponding single crack problem.

Two Arbitrarily Located Penny-Shaped Cracks

Now all three modes are present. On account of the Ssymmetry, the distributions of K,
K;; and K;; at both cracks are equal for a; = a3 = a and the same impact time. As an
example, Fig. 6 shows the result for the geometry parameters e/a = 1 and f/a = 1. The
time behaviour of K; and K1, to a certain extent, is similar to that for the stacked cracks.
Remarkable is the relatively high mode III peak value of ~}T}z = 0.6 and the zero K;;; at

= m, the last due to the symmetry. It also shall be noted that the maximum interaction
effects for mode I and for mode II, mode III are shiftet against each other along the crack
front by 7/2. Again, the interaction effects almost vanish if one of the two crack distance
parameters is high enough, e.g. for f/a = 1.0, e/a = 3.0.

Table 2 shows the maximum K-factors, the ‘stationary’ K-factors and the static K-
factors at the crack front points A, B, C. At large time ¢, good agreement between the
‘stationary’ and the static stress intensity factors can be observed. For all computations
the deviation was always less than 1%.
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Figure 6: Two arbitrarily located cracks with a same radius
Table 2: K-factors for two arbitrarily located penny-shaped cracks, fla=1
e/a 1.0 2.0 3.0
Point A B C A B C A B C
f(}"‘” 0.85 1.23 1.28 (1.26 1.31 1.26|1.31 1.26 1.26
I_(I(tSL:6.063a/cT) 0.68 0.98 1.02/0.99 1.04 1.03|1.04 1.02 1.01
K gatics 0.66 - - |o97 - - | 102 - -
I_(f“”ic** 0.66 - 1.02 | 0.97 - 1.02 | 1.02 - 1.01

* normalized static K-factors given by Kachanov & Laures (1989).
** normalized static K-factors given by Isida et al. (1985) and Murakami (1987).
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