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ABSTRACT

In this paper a method has been presented to address an inverse eigenvalue problem to facilitate
detection of location and size of an edge crack in an orientation normal to length in a beam on
multiple supports from the measurement of natural frequencies. The crack is modelled by a
rotational spring and the flexural vibration problem is formulated. This gives rise to a
relationship involving the spring stiffness, location of crack and natural frequency. The
applicability of the method is demonstrated by numerical experiments with a three span beam
with end supports and a crack located either in the first or second span. The method is accurate
up to 5% for a crack size more than 10% section depth and located away from the supports.
The method does not require much iteration.
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INTRODUCTION

A forward eigenvalue problem invloving determination of frequencies for specified crack
location and size is straightforward. The corresponding inverse problem of determination of
crack size and location from the knowledge of frequencies is rather difficult because of the lack
of uniqueness and possibility of iteration. If these difficulties can be overcome the method can
be cast into a nondestructive testing technique and it offers tremendous scope for its exploitation
in practice. Such a method of detection offers some advantages. It can help to determine both
location and size of a crack from the measurements made at a single, or at a few points, on the
components.

The development of a crack in a component changes its vibration parameters, €.g. the structural

parameters (i.e. mass, stiffness and flexibility) and the modal parameters (i.e. natural
frequencies, modal damping values and mode shapes). The vibration based methods of crack
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detection utilize one or more of these parameters as the basis for crack detection. The methods
based on structural parameters utilise mainly changes in stiffness matrix or flexibility matrix
[Park et al. (1988), Mannan and Richardson (1988) and Pandey and Biswas (1994)]. There are
some variants of the method based on modal parameters. The technique using changes in
natural frequencies as the crack detection criterion have received a considerable attention. This
is perhaps because the natural frequencies can be measured easily and monitoring is possible
from any location on the component.

Adams er al. (1978) have demonstrated that the changes in natural frequencies under
longitudinal vibration can be an important means to detect the crack location. They have
represented the damage/crack by a linear spring and employed the receptance technique for
analysis. For two dimensional, plate lke, components, Cawley and Adams (1979) have
employed finite element based approach and introduced the sensitivity analysis to facilitate the
detection. Rizos er al. (1990) have proposed a method based on flexural vibration and
represented the crack section by a rotational spring. The usefulness of the method for detection
of both location and size is demonstated for cantilever beams. The technique needs
measurement only of amplitudes at any two locations of the beam.

Liang ef al. (1991) have given a scheme, which has a lot of similarity with that of Rizos et
al.’s, but it requires the measurement of three fundamental frequencies of the beam. Later Liang
et al. [(1992a), (1992b)] have given a scheme where the inverse problem is addressed by
deriving a function involving location ard stiffness. This is done through the analysis of the
forward problem and employing the perturbation method. This procedure offers promise even
for multiple discrete cracks. For simple geometries, e.g., simply supported and cantilever beams,
this function can be easily determined. For complicated cases, simulation package is used to
derive the function [Liang et al. (1992b)]. All the methods presented in the literature have been
mostly applied to single span beams with simple end conditions to illustrate their effectiveness.
Attempts to examine beams on multiple supports, which can correspond to railway tracks,
anchored pipe lines, etc., are lacking. In this paper a method, which may have relevance to such
applications, has been developed, drawing on the analytical procedures of Liang er al. (1991)
and Rizos ef al. (1990). The effectiveness of the method is demonstrated with examples.

FORMULATION

The formulation presented in what follows is valid for any number of spans. For convenience,
a continuous beam with 3 spans and an edge crack located in one of the spans is considered
(Fig. 1). To model the transverse vibraticn the crack is represented by a rotational spring of
stiffness K,. The beam can be conveniently divided into 4 segments (AB, BC, CD and DE). The
governing equation of transverse vibration of each span is of the form:

+ & pAU = 0 )]

2 2
d_[ g 94U
de dx}

where U is dispalcement, w is natural frequency of the vibration of the beam, E is the Young’s
modulus of elasticity, / is the second moment of full area of cross-section, p is the mass
density, A is the cross-sectional area and x-axis is aligned with the axis of the beam.

Introducing non-dimensional parameters A“ = (& pAL:)/EI and § = (x-x,)/L_ where x;,=
coordinate of the left support and L = length of the span, the equations for the four segments
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are as follows:

4
dU"+A,‘U,.=0 i=1,23and4 (0}
dE*

4 4 _
where AY = A% = @?pALJ/EI Ay = &?pALJ/EI and Ay = ?pALJ/EI. £ = x/L, for

both the segments AB and BC (i.e. origin £ = 0 is at the left support of the span), and U, stands
for the dispalcement of the segment i.

The solutions to Eqn. (2) is given by '
U, = A, coshE + A, coshLE + Ay sinAE + A, sinh}, g 3)

where 4, i, j = 1, 2, 3 and 4, are arbitrary constants to be determined from the boundary
? t 2 ? 2 .. e
conditiorlils, continuity and compatibility conditions. The boundary conditions at the two end

supports are

” _ 4
Uleo =0, Ulgg=0, Uley =0, UJlg., =0 O]
At intermediate supports 2 and 3 the continuity conditions are
/ / ” T
= - = , Ul = U,
Uzlgq =0 ’ U3|5=o 0, UZ |5=1 UJ lg:o 2 lgq 3 |5 0 )

7 / 4 _

U3lg:1 =0, U4|g=o =0, U; |5=1 = Uy |5=o » Us |5=1 = Uy

The continuity of displacement, moment and shear forces at the crack location (say, £ = 3) and
jump condition in the slope can be written in the following form :

/_

A
V4 V4 / 1 " 6
Uu, =0, v/-=ul, u-=uU", Uf-=U+ X U (6)

where K = KL, is the non-dimensional stiffness of the rotational spring representing the crack.
T
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(a) Three span continuous beam. (b) Representation of crack by rotational

Fig. 1. _
spring. (¢) Local coordinate for a span.
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From the abo iti i ' . ;
obstaiiie d? above 16 conditions (given by Eqns. 4 to 6) the following system of equations is

(D] {A} = {0} @)

where {A} is the vector of the arbitrary constants A,.j and the matrix [D] is as follows.

[BL] [0] [0] [Bg]
| [0118;] [F] (0] ®
[0][0] [S] [F]
[CLl [Ce]l [0] [0]
The non-zero submatrices of [D] are given by
1100 0 0 0 Y 0 0 0 O
1100 0 0 0 0
~ 1
(B,] -  [Bal =] ooe T s T
0 000 cosA, coshA, sinA, sinhA, 0 0 -1 -1/”
0 000 -cosA, coshA, -sinA, sinhA, 1 -1 0 0

cosA; coshl, sinA; sinhA,

0 0 0 0

S]-= ; : [ =
(Si] -sinA; sinhd,  cosA; coshi,|’ ¥ = Zand 3
-cosA; cosh), -sinA, sinhA,
cosa cosha sina sinha
-cosa cosha -sina sinha
sina sinha -cosa cosha
(G =] g K K K 4
-—sina (—sinh — —
( x, (A‘ a (Alcosa (Alcosha
-cosa) csha)  -sina) sinha) |
-cosa -cosha -sina -sinha
cosa -cosha sina -sinha
[CR] = | -sina -sitha cosa -cosha |, and a=1,B.
Aﬁsina —ﬁsinha —ﬁcosa ——Igcosha
1 1 1 1
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For a crack in any other span the Eqns. (7) and (8) have the same form, only the relative
positions of the various submatrices in [D] change.

The characteristics equation obtained from Eqn. (7) can be rewritten in the form

el ©
1841

where |A,| and |A,| have the same form as |D| except for the differences in the last row.

The last rows for |A,| and |A,| are respectively as follows:
|-sina sinha cosa cosha sina -sinha -cosa -cosha 0 0 0 0 0 0 0 0]
|-cosa cosha -sina sinha 0 0 0 0 00000O0O0O0 O]

J\ﬁm + 1A, =0 or, K=-A
1

METHODOLOGY FOR CRACK DETECTION

For detection it is necessary to measure the first three natural frequencies of the beam.
Assuming the crack in a particular span, the variation of X with crack location 8 in the span
is obtained using Eqn. (9) for each of the three fundamental modes of vibration. Since there
is only one crack, the position where the three curves intersect, gives the crack location [Liang
et al. (1991)]. The crack size is then computed from the standard relation between the stiffness
K and the crack size [ Ostachowicz and Krawkczuk (1991)]

__ bhL, (10)
7271 (@lhyf (alh)
f(alh) = 0.6384 - 1.035(alk) + 3.7201 (ath)? - S.1773(alh)’ an

- 7.553(alh)* - 7.332(al/n)’ + 2.4909 (a/h)®

where b is thickness and 4 is depth of the beam. While calculating K for a particular 8 and
vibration mode it is important that a proper value of modulus of elasticity E is employed. The
modulus of elasticity £ must correspond to the uncracked natural frequency in the same mode.

CASE STUDY

To demonstrate the effectiveness of the method a case study is presented. In the absence of
experimental data, the first three natural frequencies are obtained by finite element method. A
continuous steel beam with three equal spans with the following material properties is studied:
E = 2.1x10'! N/m?, Poisson’s ratio » = 0.3 and density p = 7860 kg/m>. Natural frequencies
for both the cracked and uncracked geometries are computed with the help of a finite element
package. The beam is discretised by mostly 8-noded isoparametric elements. Around the crack
tip 12 quarter point singularity elements have been used. The various cases considered and
corresponding natural frequencies are given in Table 1 and Table 2. The variation of K with
B is obtained from Eqn. (9). Typical plots of K vs 8 are shown in Fig. 2.

To eliminate any graphical and subjective error, the three intersection points (8, K)), (8,5, K3)
and (85, K;) corresponding to the three sets of frequencies, e.g., (@), W), (w;, w3) and (w3 w)),
are determined. The centroid of the triangle formed by (8,, K;), (82, K3) and (B3, K3) is taken
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Table 1 Comparison of predicted and actual location and size for crack in first span.

: . &
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I C parison of pledlcted and Ctual ocatio CK 1 Secolld span.
ar a location and size for cra k in P
able 2 om|

Crack details Natural frequencies (rad/s)

Predicted crack location and size

Natural frequencies (rad/s)

Predicted crack location and size

location size w; w, w3 location stiffness size
B (ah) g % error K (@h) % error

uncracked  1466.46 1872.83 271913

0.1 0.1 1466.26 1872.39 2718.72

0.1 0.2 1465.54 1870.86 2717.34 0.1247 2468 77.25 0.1578 -21.09
0.1 0.3 1464.23 1868.09 2714.84 0.1209 20.89 30.27 0.2514 -16.20
0.1 0.4 1461.97 1863.42 2710.57 0.1121 12.13 13.17 0.3670 -8.26
0.2 0.1 146558 1871.00 2717.57 0.2030 1.49 196.47 0.0974 -2.55
02 02 146295 1865.69 2713.10 0.2096 4.82 5256 0.1918 -4.10
02 03 1458.09 1 856.36 1705.29 0.2087 433 2224 0.2906 -3.14
02 04 144957 1841.26 2692.74 0.2060 3.02 11.05 0.3953 -1.16
05 0.1 1463.83 1868.95 2717.53 0.4994  -0.11 185.10 0.1005 0.51
05 02 145622 1858.49 2713.28 0.5009 0.18 48.05 0.2006 0.30
0.5 0.3 144237 1841.56 2706.43 0.5011 022  20.59 0.3010 0.34
0.5 0.4 141881 1817.75 2696.77 0.5009 0.18 1049 0.4040 1.00
06 0.1 1464.10 1870.23 2718.74 0.6013 0.22 18527 0.1005 0.46
0.6 0.2 145732 1863.13 2717.62 0.6003 0.05 48.09 0.2005 0.26
06 03 144520 1851.53 2715.76 0.6001 0.01  20.59 03010 035
0.6 04 - 1425.27 1835.02 2713.01 0.5997  -0.05 1051 0.4038 0.95
0.8 0.1 146559 1872.83 2717.83

0.8 0.2 1463.06 1872.70 2714.07 0.8012 0.15 4937 0.1979 -1.05
0.8 03 1458.70 1872.50 2707.60 0.8003 0.04 20.99 02984 -0.52
0.8 04 1451.86 1872.14 2697.42 0.7994  -0.08 10.60 0.4022 0.56

as the common intersection point (3,

computed crack locations and sizes

DISCUSSIONS AND CONCLUSIONS

The effectiveness of the method is

predominantly dependent on the

K). The crack size is then com
are presented in Tables 1 and

puted using Eqn. (10). The
2.

changes in frequency in
be the effectiveness. For

of edge crack has been addressed here, if a similar modelling is possible for an internal crack,
the method can be routinely extended t an internal crack.

The method is able to predict both the location and size reasonably accurately for the cases
considered. The error increases when the crack is close to a support. For such a location (e.g.

Crack details . .
i w w3 location stiffness size
o - ’ B % error K (a/h) % error
B (a/h)
noracked  1466.46 1872.82 2719.13 _
0.0 3.
01 01 146626 1870.73 2717.18  0.0984 -(1).32 22;).;;91 00963 365
‘| 02 146555 1864.82 271135 0.0999 - o6 e9s9 0197 27
o.} 03 146430 1854.78 2701.68 0.1002 8'18 21,04 02981 062
(()).1 0.4 146224 1839.43 2687.44 0.1002 0. ]
- . 244 0099  -0.42
01 1464.76 1872.18 271726  0.2999 -o.o; 1:: ;12 00996 -0.42
o.g 02  1459.93 1870.38 2711.98  0.3002 o.(l)2 852 01996 019
0‘3 03 1451.49 1867.35 2703.01  0.3004 8'18 2077 0259005
3'3 04 1438.01 186278 2689.31 0.3005 O. ;
' ' 0998  -0.16
01 146411 1872.66 2714.14 04017 0.43 13;.35;) g.zooo .16
0.: 02 1457.43 1872.18 2700.54  0.3999 -o.gi 834 02000 000
O O3 144576 187137 267780  0.3998 -o.05 2068 03004 015
g'j 0.4 142720 1870.14 2644.13 03998 -O0. .
1 1 1 1 1
I I ‘ B =05 b
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Fig. 2. Typical plots of K vs 8 for crack in first or second spans.
ig. 2.
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B=0.1and a’h=0.1, or 8 = 0.8 and a/h= 0.1) the change in frequency is too small to provide
any basis for a crack detection. The error again depends on whether the crack is close to any
end or intermediate supports (Table 1). Barring these, for the first span, the error in location
is less than 1%, except for the case of = 0.2 where it is about 5%. The corresponding figure
for crack size determination is less than 4.5%; in many cases it is less than 1%. For cracks
located in the second span, even a 10% crack can be predicted when it is close to any end
support (e.g., 8=0.1). The error in location or size is less than in the previous case.
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