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ABSTRACT

Problems are investigated in ductile fracture where many cracks form, the
natural (unprescribed) paths of which are not always in expected directions.
Experiments agree with the predictions of rigid-plastic fracture mechanics.
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INTRODUCTION

By ‘ductile fracture’ is meant fracture where extensive plastic flow precedes crack
initiation, and also accompanies crack propagation. In such circumstances, rigid-
plastic fracture mechanics (where elasticity is neglected) has proved to be an
acceptable line of attack to predict loads, displacements and energies before and
after crack initiation and propagation, both where the crack paths are prescribed
and where they are not (Atkins, 1993).

Problems to be discussed in this paper concern multiple axial cracking in the
flaring-out of tubes; multiple radial cracking in perforation/hole flanging of
plates and sheets; multiple radial fractures in the biaxial expansion of holes in
plates and sheets; converging cracks forming detached tongues of material in
tearing strips of material; and diverging buckled pieces formed when plate or
sheet is loaded compressively in-plane. In some of these problems the crack
directions are not known ab initio; in many of them, the number of cracks is not
known ab initio. We shall explore how calculations may be performed. These
sorts of problems are of technological importance in crashworthiness studies,
packaging and so on.
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MECHANICS

Before crack initiation, we have

Xdu=dI ¢))

where X is the applied load, u the load-point displacement and I is the plastic
work. This is the basic equation of rigid-plasticity. Unlike traditional fracture

mechanics, there need not necessarily be a starter crack, and I' is spread

throughout the body/structure and may extend to the boundaries. I' does not
relate merely to some plastic zone at a starter crack tip. Stress and strain fields

making up I' are likely to be non-uniform but, after some loading, cracks will be
initiated at locations where material damage has reached a critical value. The
critical value will depend upon microstructure and will be governed by path-
dependent hydrostatic stress-effective strain relations, such as those of
McClintock (e.g. 1966 & 1968), Rice & Tracey (1969) in continuum plasticity or
Oyane (1972), Gurson (1977), or Rousselier (1979) in porous plasticity.
Sometimes, particularly with sheets, necking will occur before crack initiation,
which localises the deformation and the paths of subsequent cracking are often
formed by the paths of the necks.

In metal forming, crack initiation sets limits on processes such as bulk forging,
drawing etc; in sheet forming, preceding necking is often the limit. Chapter 5 of
Atkins & Mai (1985 & 1988) gives many illustrations of fracture limits in metal
forming and how they may be predicted using Equ (1). Most of the old-
established empirical criteria for cracking in bulk plasticity turn out to be
versions of the damage mechanics criteria now popular in elastoplastic fracture
mechanics calculations, i.e. dependent on both stress state and strain state. In
some ductile fracture processes, cracking is required, as in the opening of
beverage and food cans, guillotining and cropping etc. Furthermore, even when
fracture is undesirable, the extent of crack propagation for a given energy input is
important, as in ship grounding or for energy-absorbing devices.

During crack propagation, we have

Xdu=dI" + RdA (2)

where R is fracture toughness and A is crack area. I' in Equ (2) is different from
that in Equ (1) because of the existence of one or more lengthening cracks. R is
the ‘specific essential work of fracture’ as described by Cotterell, Mai and co-
workers, (e.g. 1982) and is a crack tip term uncoupled from the remote plasticity

described by I'. Equ (2) in integrated form, is the basis of the Cotterell-Mai
methods of determining R in modes I, II, and III (1977, 1982, 1984). Such
independent estimates of toughness, along with traditional yielding values,
enables Equ (2) to be used predictively for propagation forces, work done and so
on. For example, consider the opening of a full aperture can, Fig 1a. The crack
path is prescribed owing to the scoring of grooves around the circular lid of the
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can. T concerns plastic bending and unbending of the whole lid, which ?s
removed in practice at almost constant radius. Since the plastic work done is
(work/volume) (volume), the plastic work (and associated force) increases to
reach a maximum across the whole diameter and thereafter decreases. In
contrast, the fracture work required is very high at the beginning and end, and
least across the full diameter. This comes about because the crack area increment
is least across the diameter (being parallel then to the direction of bending) but
otherwise inclined to the direction of pull. The large force at the end of pulling
explains why we have to ‘waggle’ the tops of cans finally to remove them:'the
direction of pull is at right angles to the direction of crack propagation.
Calculations using Equ (2) show that

Xsin@=C, +C,sin*@

whereC, =Yt?r/p and C, =2Rt’, with Y the rigid-plastic yield strength, t the
lid thickness, ¢/, tf\e groove thickness, r the radius of the can lid and p the
pulling-off radius of bending. Figure 1b shows that the simple analysis seems to
work satisfactorily. The Rt” intercept of 11 N gives R = 55k]/m? for the lacquered
and softened 5052 H19 aluminium alloy, having oy = 260MPa, t = 0.25 mm, ¢’ =

0.1 mm andr = 70 mm. The slope corresponds with p = 22 mm which accords
with experiments.

A connexion between Equs (1) and (2) may be made if it is argued that crack
propagation is a process of continous re-initiation of cracks, Atkins & Mai, 1987.
The fracture work per area of crack (R) obtained from pre-cracked testpieces may
be converted to a plastic work per volume by dividing by the process zone height
(h), i.e. RdA is dissipated within a volume hdA. In an uncracked plate which
eventually fractures in some location where the effective von Mises strain is £,
the local plastic work per volume is Y& (or O'OE}'” /(n+1) if there is
workhardening represented by & = 6,€"). Whence

E, = R/RY or [(n +1)R/ho‘o]%"+l). €, may be broken down into the &,
... components using the plasticity flow rules and loading paths up to fracture.
The method works particularly well when h is well defined, as in the necked-
down zones of thin sheets. We have successfully predicted the fracture forming
limit diagrams of uncracked sheets over a wide range of strain biaxialities, using
the R measured by Cotterell-Mai methods in pre-cracked sheets of the same
material, Atkins & Mai (1987). Since such failure diagrams can also be predicted
by McClintock or other damage mechanics analyses (which relate to void growth)
it follows that there is an R-to-void growth connexion too (see Chapter 5 of
Atkins & Mai (1985 & 1988)).
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MULTIPLE CRACKING IN TUBE EXPANSION AND IN PERFORATION OF
PLATES BY CONICAL TOOLS

Tubes may be successfully inverted or everted by compression on to a
female doughnut-shaped die (e.g. Al-Hassani et al, 1972). When things go wrong,
however, a series of stably-propagating axial cracks is formed, Fig 2. The
perceived wisdom for the onset of cracking in tube expansion is, presumably, the
attainment of a critical hoop strain, or critical COD at the tip of each crack. But it
says nothing about the number of cricks. A related problem is perforation of a
sheet by a conical-headed projectile; if there is a starter hole, that process becomes
hole-flanging (Johnson et al, 1973) . Once again, under certain conditions a series
of radial cracks is formed resulting in petalling , Fig 3a, the number of which
depends on the cone angle. How may we predict the number of cracks in such
probl.ems? It turns out that the global energetics of crack propagation, i.e. Equ (2),
provides the answer, when coupled to the criterion of a critical amount of
damage at each fracture site (which, for simplicity, may be represented by a

critical hoop strain €g¢ at fracture in these cases). We contrast the work
increments for

) (i) plasticity alone, Equ (1) and (i) plasticity plus crack propagation, Equ (2).
It is convenient to write

dT" = WdV +VdW 3)

where W(=YE) is the average plastic work/volume over the whole volume V
being plastically deformed. Thus we have

(i) Xpeporedu = WdV +VdW 4)
and (ii) Xaﬁ”du =WdV +VdW +N.RdA (5)

where N is the number of cracks. When the end of a tube is initially flared out,
both terms in Equ (4) exist as there are incremental changes indV and d W sincé
there is new material coming over the curved die from the tube and the leading
edgg of the flare experiences bigger plstic strains as it grows to larger diameters.
During fracture dW is zero in Equ (5) since there is no further plastic flow in the
leading edge of the flare after cracks begin to propagate, and the plastic-
deformation field becomes steady. WdV still exists, since new material
continues to enter the deformation zone, to be brought up to the steady-state
value of W. Hence

D Xy du=WdV +VdW ©

and (i)  Xgp,,du=WdV + N.RdA @
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At first X pefore < X after; vice-versa during cracking. The transition from flow to
flow and fracture, occurs when the work increments change relative magnitude
i.e. when

WdV + N.RdA =WdV +VdW
or N = (V/R)(dW/dA) ®)

in steady state propagation. It may be shown (Atkins, 1987) that
N = @n/3)(Y/R),Ey ©)

where 7, is the radius of the tube. (Other, slightly different expressions are
possible, depending upon the assumptions made; Atkins, 1989). Equivalently,

N = (4n/B)(Y/R)(u} [b) 10)

where uyis the axial displacement of the tube at the onset of cracking and b is the
radius of the toroidal die. For the 50 mm diameter, 1.6 mm wall thickness mild
steel and aluminium alloy tubes studied by Reddy and Reid (1986), compressed
on to a die of radius b = 12 mm, n= 8-12 for both as-received and annealed tubes.
This is about the prediction of Equ (10) using

(Y/R)=10"m™, and u; =4 mm.
Various features of Equ (9 ) & (10) are worth highlighting:

(a) Equ (9) which applies when eg¢ is small, suggests that N is
independent of b. The results in Reddy & Reid (1986) support this, e.g. Tables 2
and 3 in that paper.

(b) N depends upon the product of (Y/R) and &g . In very ductile solids,
(Y/R) will be small, but the strain to fracture (however defined) will be
correspondingly high. Vice versa, in less ductile solids (¥/R) will increase but
the fracture strain decrease. Thus, according to this rigid-plastic analysis, the
number of cracks may not change much between same size tubes of metal in the
annealed and work-hardened states. The results reported by Reddy & Reid (1986)
support this conclusion.

If, in experiments, small saw-cuts at various orientations are used, extremely
interesting behaviour is observed, depending on whether the number of starter
saw cuts is smaller or greater than the value of N given by Equs (9) or (10). For
fewer cuts, all starter cracks propagate and some then bifurcate to bring the final
number of propagating cracks up into the characteristic range; for a greater
number of cuts, some starter cuts never develop into cracks, which brings down
the number of cracks propagating into the characteristic range. It seems
significant that all saw cuts are presumably ‘ready’ to propagate but some did not
and that others bifurcated.
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The prediction of the number of radial cracks around perforations made by
conical penetrators may be performed in the same way. We start with the hole-
flanging plasticity analysis of Fig 3b (Johnson & Mellor, 1973). The distribution of
strain within, and the profile along, th: deformed lip is calculable. In particular
the hoop strain at the tip of the lip is given by

b- Hsina
Eaip = n(Z——25) 1n
b a, %7 %
h H=——|1-{1-[1-(=2)"2
where sina[ { [ (b) ]sma} ] (12)
Thus Eqip = ln[;b-[l -[1- (%"]%]sin a}%‘} 13)

The mean plastic work/volume for the whole lip is some W = Ygaip /2

and the volume V = m(b* —af)ho. We use Equ (8) again for the number of
radial cracks n, viz:

N =(V/R)(dW/dA)
where A = hyjp dH. Thus

_m(b*—al) Y dg,,
R  2h, dH

tip

N

_n(b® —a2) Y(b—Hsna)” degy/db
R 2m,a2  dH/db

(14)

This expression is clearly more cumbersome to use than Equs 9 or 10.

MULTIPLE NECKING AND FRACTURE

The case of petalling in cone penetration is almost certainly to do with preceding
radial neck formation at the tip of the developing conical flange around the hole.
When perforating sheets with no starter hole, the tip of the penetrator has first to
emerge from the distal side before radial tensile cracks can form, so effectively
there is a starter hole. In thick plates with no starter hole cracking may occur on
the distal side in bending. The lip is thinnest at the leading edge, so the strains
are greatest there and necking is expected to start at the free edge. The number of
necks must relate to displacement compatibility of adjacent elemental rings of
material, as well as the requirement for a smaller increment of work in the
different deformation mode. Onat and Prager’s slipline field model of plane
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strain neck formation (1954) predicts an actively deforming shrinking region for

the neck, with shoulders at tan™’ (1/2) = 27° to the axis of deformation widening
out to the necking thickness t,. Necking commences in a region of length equal
to tn and the extension e of the necked region is e = (t, - x) by geometry, where x
is the current dimension of the plastically deforming zone. A ring of radius r
expanding uniformly to (r+ Ar) extends by 2nAr. If, instead, N necks form, each
of starting length ty, it might be argued that the total length (277 — Nt,,) between
necks remains at the same length. Each neck extends by
e=(t,—x) =t,—(t, — At)=At. For hoop displacement compatibility

(2mr — Nt,)+ N(t, + At) = 27(r + Ar)
ie. N =2xm(dr/d:). (15)

dr/dt is a measure of the ‘side profile’ of the neck, i.e. the rate of thinning.
Continuity of thickness says that elemental rings will, in fact, thin down as they

expand at constant Ar, which modifies the prediction for N. Even so, Equ (15)
provides an acceptable estimate for N.

Rather like the saw-cuts that may not propagate in the tube expansion problem,
not all such necks may become cracks. A fascinating problem which displays this
feature is that of the biaxial ductile expansion of circular holes in plates (Arndt,
1996), Fig 4a. Biaxial expansion is achieved using hydraulic bulging with a
second ductile sheet beneath to act as a hydraulic seal. Arndt finds (a) that the
number of necks depends on the size of the starting hole; (b) that not all necks
become cracks; (c) that necks initiate not at the edge of the hole (as in hole-
flanging) but at some radial distance into the sheet. The latter is explained by
appreciating that around the hole, the stress and strain rate is uniaxial tension
(so that the radial strain is compressive) but far away from the hole the strain
state is biaxial tension (with tensile radial strain). Plane strain necking occurs for
those elements for which both the increment of radial strain is zero and the
hoop strain is equal to the strain hardening index n . Once necks initiate at the
‘in-board’ location, they continue to thin down at that location, simultaneously
spreading both outwards towards the rim of the disc and inwards to the bore.
Eventually, at the original location, the critical fracture strain is reached, and
further deformation produces radial cracks, with biggest opening at the original
location, but not, initially, extending to the bore. Of importance we note that not
all necks become cracks, Fig 4b. Arndt (1996) is investigating this in terms of
competing work increments for (a) cracking over N* cracks within necks versus
(b) continued necking over all N necks formed initially.

This sort of behaviour is seen in high rate deformation. Experiments with
focussed blasts on plates showed that before tears formed, localisation occurred at
approximately 24 locations around a pre-existing hole but as the deformation
progressed, only 8 developed into long tears (Bammann et al, 1992).
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CONVERGING & DIVERGING CRACKS

When attempts are made to tear a parallel strip from a large sheet by pulling and
bending up the strip, the two tears invariably converge to a point, producing a
‘gothic window’ tongue of material. Fig 5 shows an experiment on a brown paper
envelope. It occurs with all types of materials. The phenomenon is irritatingly
familiar in packaging where tear paths are not always in the direction intended,
e.g. creamer cups where the top itself tears to a point rather than at the adhesive
joint around the periphery which is intended to give a ‘full aperture opening; in
the stripping of wall paper; in food packaging of all sorts; in getting into blister
packs; and so on. When adhesive tape becomes detached from its roll along a
diagonal path, it is one half of a converging pair of tear paths.

In contrast, if a sheet of material is loaded by an in-plane compressive load which
tears the material, two diverging cracks are often formed, with material piling up
concertina-fashion as the tear progresses, Fig 5. The diverging tear problem is
familiar when a piece of paper, stuck to a notice board with a drawing pin, is
suddenly pulled down with the pin in place. It is also a daily observation at the
bottom of newspaper pages where, on the printing press, conveyor belt ‘teeth’
have indented and torn the newsprint when moving it along. Like the
converging tear problem, the effect can be produced in a variety of different types
of material.

There are large-scale engineering examples of both phenomena. The top of the
fuselage of a Boeing 737 became detached over Hawaii in 1988: a series of
pointed-tongues occurred along the lower half of the fuselage where the upper
half finally ripped off. When the Exxon Valdez was dry-docked after the accident
in Prince William Sound, Alaska, in 1989, a hole from which the oil had spilled
was a concertina-type diverging tear (see Atkins, 1994).

Why can such different patterns of cracking behaviour occur in the same
material? Why are these natural paths of cracking not straight? It is found that
minimum energy arguments provide the answer.

Let us first consider the tearing/bending strip problem. A strip of initial width w

is rolled up to a constant radius p, Fig 6 (Atkins, 1991). The tear takes its own (as
yet unknown) path. At some distance x measured from the beginning of the
tear, the current width of the tear is 2y and the distances measured along the
unknown tear path are given by s. For an increment dx, the incremental

volume of material bent to radius p is 2y tdx, so dI" = 0,(t/4p)2ytdx. Over the
same increment dx, the fracture work required is given by 2Rtds for both tears

together. Hence Equ (2) becomes
MdO =Y (t/4p)2ytdx + 2Rtds (16)

where M is the rolling-up external moment and 9 is the angle of rotation. We
note that d6 and dx are related by pd6 = dx; also ds = dx+/1+ p> where
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p = dy/dx If we minimize this work rate , two different paths are predicted, viz: a
parallel path, where tearing is self-similar in the direction of the original tab
sides (that is, y = w = constant), and a catenary-shaped path with equation

Y
y=w+ SR%I[I - cosh(ﬁ)] a7

The pair of cosh curves converge to a point, and if x = L, when y = 0, the aspect
ratio (length : initial width) is given by:

L 8Rp i Yrw
—=—F cosh™|1+(— (18)
W owre o [ (8Rp)]

Equation (18) well describes the ‘gothic window’ shapes of torn tongues. No
explanation was given as to why a converged path was invariably followed
rather than the equally-possible parallel path. More recent work by Muscat-
Fenech and the author (1994 a, b,c) has shown that it is the result of the local lift-
off of the flat sheet near the tear front, and the associated contra-curvature
thereby produced. Very small curvature is required to tip the balance, and Equs
(17) and (18) adequately describe experimental data, without the inclusion of the
lift-off curvature.

That the crack paths converge makes sense physically, in that the incremental
tear length is least for a parallel path (dx); any outwards- or inwards-pointing tear

would have a longer incremental length ds=+/dx? +dy?. Were converging
bending-tearing tongues to diverge, not only is the crack path length longer, but
more and more material would be rolled up compared with a reference parallel
rolled-up tear. So no one is “adding more to more”, and greater work is
inevitably required. When crack paths converge, the fracture work increment is
still greater than a parallel tear, but now the plastic bending work is smaller as
less and less material is being rolled up. So an increasing function is being added
to a decreasing function, which leads to an optimum shape. Hence the pair of
catenary curves meeting at a point. The argument for diverging tears is not so
obvious, but the clue is found in the deformation of the propagating strip. In the
rolling-up case all the material is bent; in the buckled concertina case,
deformation is mainly concentrated in the plastic hinges of the buckles.

Wierzbicki (1995) has given a model for tearing along a prescribed parallel path
with material buckling up into a concertina, Fig 7. The plate is of width b and
thickness t. Because of the periodic nature of the simultaneous tearing and
folding failure process, it suffices to consider one section of the plate length 2H,
where H is an unknown wavelength. The plastic work I' comprises bending
work in the system of hinge lines and in-plane membrane work of stretching
and compression. The tearing work along the (prescribed) parallel path is simply
2Rt dx, since ds = dx in this case. Equation (2) may be applied and the external
mean force obtained by minimising the energy with respect to H and & which
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locates the intersection of the hinge lines, and is another unknown of the
problem.

The parallel tear analysis has been adopted by Liu (1996) to a concertina tear

running at an arbitrary angle A and the solution minimised. It is found that the
optimum tear path is indeed divergent, and good agreement is found with
experiment. Of significance in the result is that the fold wavelengths H increase
as the tear lengthens. Since the wavelength increases with tear length in a
diverging concertina, the average tear length increment (H/cos A) on which the
mean force is calculated, increases and each wave requires more fracture work.
Consequently the mean force from fold to fold (operating over longer distances
H) can still be kept low even with the additional lengths of hinge line in a
diverging tear because the major part of the fold remains flat and is
underformed. Were the concertina to converge, instead of diverge, the
wavelengths would decrease and, at a given concertina length, some of the
previously underformed ‘flat’ material would have been hinged, leading to a
greater work requirement. It is the fact that the concertina mode of deformation
takes place in discrete regions which makes a diverging tear energetically
favourable.
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Fig 1 The opening of a “full aperture” can by force X applied parallel to the
top surface. Model assumes plastic bending at constant ratio p throughout.
(a) Geometry of opening; (b) Experimental forces plotted in a way suggested
by model.

Petal

Fig 2 Axial splitting of flared-
out ductile metal tubes. b

Fig 3(a) Petal formation in hole

flanging with conical drifts; (b) Model

based on ring expansion.
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Fig 4(a) Radial neck formation during biaxial hole expansion; (b) Detail of radial
crack (not all necks become cracks).

L

i lled-up convergin
fig 6 Model for rolled-up B Fig 7 Wierzbicki’s Model for

concertina tearing along a
prescribed path.
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