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ABSTRACT

Fracture in materials with strain gradient effects is studied by analytical and finite element
methods, using Fleck and Hutchinson’s strain gradient plasticity theory. Analytical solutions are
obtained for the near-tip field in an elastic-plastic material with strain gradient effects. The
mixed mode near-tip stress field in a power-law hardening solid is the linear superposition of its
counterparts in mode I and II. The size of the dominance zone for the near-tip field is
approximately /, the intrinsic material length on the order of a few microns. For an interface
crack between dissimilar elastic-plastic materials with strain gradient effects, the analytical near-
tip field does not agree with numerical results, indicating the existence of nonseparable fields.
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INTRODUCTION

There are many experiments indicating that materials display strong size effect when the
characteristic length associated with the deformation becomes small, typically on the order of
microns. For example, the measured indentation hardness of metals and ceramics increases by a
factor of two as the width of the indent is reduced from 10 microns to 1 micron (Nix, 1988;
Stelmashenko et al., 1993; Ma and Clarke, 1995; Poole et al., 1996). As the wire diameter
decreases from 170 to 12 microns, torsion of thin copper wires exhibits a systematic increase in
torsion hardening (Fleck et al., 1994). Conventional plasticity theories based solely on strain
hardening would not predict this size effect.

Fleck and Hutchinson (1993, 1996) and Fleck et al. (1994) developed the strain gradient
plasticity based on the dislocation theory. Its fundamental is that the material hardening is due to
statistically stored dislocations as well as geometrically necessary dislocations, and the latter is
associated with plastic strain gradients (Nye, 1953; Cottrell, 1964; Ashby, 1970). A new length,
/, considered as an intrinsic material length depending on microstructures, is introduced in strain
gradient plasticity. When the representative length of the deformation field L is significantly
larger than the intrinsic material length /, strain gradient effects become negligible and the theory
degenerates to conventional plasticity. However, as L becomes comparable to or smaller than /,
strain gradient effects come into play (Fleck and Hutchinson, 1996). The strain gradient
plasticity can predict the size effect observed in experiments.
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Due to stress singularity, large strain gradients exist near the tip of a crac!( in. materials. The
strain gradient effects become important vhen the crack tip process zone size 1S comparable to
the intrinsic material length (Xia and Hutchinson, 1995; Fleck and Hl.xtch.mson, 1996), 'l,
typically on the order of microns. The present paper provides.an investigation of. the strain
gradient effects in fracture of homogeneous as well as bimaterial sys}ems. It begins vxfxth a
summary of strain gradient plasticity theory, while details can be found in Fleck and Hutchinson
(1993, 1996) and Fleck et al. (1994).

SUMMARY OF STRAIN GRADIENT PLASTICITY THEORY

The generalized stresses are Cauchy stresses tjj and couple stresses mi;; the correspc.mding strain
measures and displacements are strains €, displacements ui, and curvatures 7, rotat19ns ;. Tl¥e
(unsymmetric) Cauchy stresses are decomposed to the symmetric part Gjj and anti-symmetric
part 7. Equilibrium of forces and momerts requires

4= 0+ i, =0, myijtewta=0 ] _ m
where e is the permutation tensor. The kinematics analysis gives strains, rotations, and
curvatures in terms of displacements,

g =(uig+u;)/2, oiTepgug/2Z, Xi= 0y . 2
The elimination of displacements and rotations yields the x—€ compatibility equations and
compatibility equations,

xii = €k €l k> ikl Xik,1= 0 ) ] . . 3
The constitutive law for the deformation theory of strain gradient plasticity can be written as
o, =0W/oe;, my =0W /oy, @

where the strain energy density W depends on the first invariant of strains em=tx/3 and second
invariant of strains and curvatures, e=(68gij-2¢i) /3, =i/ ie.

W=W (&, %e>em) . (5)
The intrinsic material length / enters (5) from dimensional consideration. For an elastic solid
with strain gradient effects, W takes the form (Koiter, 1964; Mindlin, 1964, 1965)

W=3G(e2+1%2%2)/2+Keq/2 6
where G and K are shear and bulk moduli, respectively. For an elastic-power law hardening
solid with strain gradient effects, W is given by

W=n3oEo[ (s +12x2)/Ed] "M/ (n+1 Y+ Kem /2 )
where n(>1) is the plastic hardening power, %, and E, are reference stress and strain, such as
uniaxial yield stress and strain related viz Young’s modulus E by Eo=Z¢/E.

Each boundary has five independent boundary conditions in strain gradient theory. At a
boundary with prescribed tractions, theyare

[ ti - €k (Mpqmp g )k /21 =T, mj Mji - Mpq Np Nq 1 = G _ ®)
where n is the unit normal at the boundary, and T; and q; are reduced stress tractions and couple
stress tractions. At a boundary vith prescribed displacements, three components of
displacements and two tangential compaments of rotations are given.

FRACTURE OF HOMOGENEOUS MATERIALS WITH STRAIN GRADIENT EFFECTS

Elastic Materials with Strain Gradient Effects

Elastic Materials with oStialll JJIanibin 2oieens

For an elastic material with strain gradient effects, Sternberg and Muki (1967) and Atkinsofl and
Leppington (1977) investigated mode | fracture for a finite crack subjected to remote uniform
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tension and a semi-infinite crack with exponentially decayed symmetric traction on the crack
surface. Huang et al. (1995) established that the mode I asymptotic near-tip field also has the
square-root singularity, but is governed by two parameters, one for singular stresses and the
other for singular couple stresses. The additional parameter comes from the irrotation of the
deformation field near a crack tip. The dominant, singular stresses give a vanishing couple stress
field, while the dominant, singular couple stress field comes from second order stresses.

The mode II near-tip field is also irrotational, but couple stresses are bounded, with only one
parameter governing singular field in mode II (Huang et al., 1996). The mixed mode near-tip
field has the structure in polar coordinates (r, 6)

t=[Bit(®) +Butu®) ]t "'?, m=IAm@®r " ©)
where subscripts I and II correspond to mode I and II, B and A are amplitudes of the near-tip
stress and couple stress fields, respectively, and (), ty(6) and my(®) are nondimensional
angular functions given in Huang et al. (1996). For anti-plane deformation, the near-tip field has
the structure (Zhang et al., 1996b)

o=Bur'?om® /!, m=IByur ' ?mm@®), t=1IBu 132 y(0) (10)
The symmetric stress is not singular around the crack tip, while the anti-symmetric has the
singularity but does not violate the requirement that the strain energy around the crack tip is
finite. It is similar to Schiermeier and Hutchinson’s (1996) mode III crack tip in strain gradient
plasticity. The high-order singularity comes from the rotation in anti-plane deformation.

Zhang et al. (1996b) used the Wiener-Hopf method to investigate the transition from the
classical K field (') to the new mode III near-tip field (r>?) in (10). For an-infinite elastic
materials with strain gradient effects containing a semi-infinite crack, the classical K field was
imposed as the remote boundary condition. It is established that the new asymptotic field
dominates within a zone of 0.5/ around the crack tip, while strain gradient effects are observed
within 5I. As the representative length associated with the deformation field becomes
comparable to or smaller than the intrinsic material length /, the stress level around the crack tip
is increased significantly. Zhang et al. (1996a) made similar observations in mode I and 1I
deformation. They investigated the transition from classical K fields to the new near-tip fields in
(9) by the Wiener-Hopf method as well as by the finite element method [using the element
designed by Xia and Hutchinson (1995) to capture the strain gradient dependence]. As r
increases, stresses do not transit monotonically between these two fields; stresses decrease from
the new near-tip field to a level below the classical K field, and then gradually increase to
approach the K field. The reasonable agreement between these two approaches provides another
validation of the finite element method.

Elastic-Plastic Materials with Strain Gradient Effects

The path-independent J-integral (Rice, 1968) for materials with strain gradient effects is given by
(Huang et al., 1995; Xia and Hutchinson 1995)

J=J(Wn, - Tu;, —q0;,)ds an
r

where T is an arbitrary contour surrounding the crack tip, originating and ending at lower and
upper crack surfaces, respectively, W is the strain energy density, n is the unit normal on the
contour, and T, u, q, and ® are stress traction, displacement, couple stress traction, and rotation,
respectively. For an elastic-power law hardening solid with the constitutive law in (4) and (7),
Huang et al. (1995) and Xia and Hutchinson (1995) established that the near-tip asymptotic
stress field has the same order of singularity as the HRR field (Hutchinson, 1968; Rice and
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Rosengren, 1968). It is also controlled by a single parameter, J-integral, because couple stresses
are less singular and are not the dominating terms near a crack tip,

1 n+2

cos 60— —cos 0
. n+11 n1 n+12

. . n+
to _ 2nZ, |- (n+1)J ]}(/M” —Smn+19+nsmn+1eL
tor | +3(n+ 1)L 2mEEor PO TP
tos n+1 n+1
1 n+2

| cosn+19+cosn+19

mzo[r-l/(n+l)] (12)

where n, X, Eo and J are the plastic hardening power, reference stress and strain, and J-integral,
respectively. [Huang et al. (1995) established that there is another possible asymptotic field in
which couple stresses dominate and stresses become less singular. This field, however, has not
been verified by FEM.] The analytic solution in (12) is obtained because the near-tip field is
irrotational as well as incompressible. For an elastic-perfectly plastic solid (n=00) with strain
gradient effects, stresses become t,,=2):o/~ﬁ , te=0, te,=2Zosin6/J§ , and tee=220(1+cose)/J§ S
which are completely different to the Prandtl field in conventional materials.

The mode II near-tip field is obtained analytically by Xia and Hutchinson (1995). Stresses are
the same as those in (12) except that cos and sin are replaced by -sin and cos, respectively.
Huang et al. (1996) established that, for an elastic-power law hardening solid with strain gradient
effects, the mixed mode near-tip stress field is the linear superposition of its counterparts in
mode I and II. This linear superposition for nonlinear materials also results from irrotation and
incompressibility in in-plane deformation for strain gradient materials. [Unlike mode I, it is
impossible to have a couple stress-dominated field in mode II (Huang et al., 1996). The couple
stress-dominated field under mixed mode loading is identical to that in mode 1.]

Xia and Hutchinson (1995) presented a finite element study for mode I and II fracture in strain
gradient plasticity. The HRR field was imposed as the remote boundary condition in the finite
element study. Numerical results showed that the transition from the HRR field to the new near-
tip field occurs smoothly. The HRR field is accurate for r>5/; the singular field becomes
reasonably accurate for r<//5; and a graduate transition region lies between, where r is the
distance to the crack tip and / is the intrinsic material length. The HRR field was imposed at
=101 to ensure the remote boundary condition is effectively applied.

Using the same element designed by Xia and Hutchinson (1995) to capture the strain gradient
dependence, Zhang et al. (1996a) investigated mode I and II fracture under small scale yielding
condition. The classical K field (i.e., the crack tip field in conventional materials without strain
gradient effects) was applied as the remote boundary condition. Displacements from the
classical K field was imposed at r=10%l, the boundary of the finite element mesh. Only upper
half plane was analyzed due to symmetry. There were 30 layers of elements in the
circumferential direction, and 81 layers in the radial direction. The size of the smallest element
near the crack tip is 10”1, and effort is made to ensure elements having aspect ratios close to one.
Numerical results for plastic hardening power n=10 and 3 are obtained, but only those for n=10
are presented in this paper. [A solid with a piecewise elastic/power law hardening stress-strain
relation in uniaxial tension is used to bettercharacterize the plastic yielding.]

Figure 1 shows the angular distribution of T for mode 1I stress intensity factor Ky=20Zo/ 12 and
several r/l, where )2=(tre2+m¢2/12)”2 is a combined measure of effective stress o and effective

e
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c'm'lple stress lne=(3mijmij/2)l/2. The maximum plastic zone size is 260/, only 2.6% of the overall
finite element domain so that the small scale yielding condition is met. The near-tip asymptotic
field corre§ponds to a horizontal line in Fig. 1 because X is independent of polar angle 6 (Xia
anq Hutchinson, 1995; Huang et al., 1996). The mode II HRR field (Symington et al., 1988)
which clearly exhibits a dependence on 6, is also shown in Fig. 1. The angular distribut,ions for,
small r (.e.g., r/1=0.0041, 0.024 and 0.21) agree well with the near-tip field; the distribution for
r=12.3/ is very close to the HRR field; and the curve for r=1.63/ corresponds to a transition
bf:tween two fields. For Kn=202‘.ol”2, finite element results agree reasonably well (within 10%
dnfferer'xces) with the near-tip asymptotic field in a zone of size / around the crack tip. The zone
of dominance for the near-tip field is larger than that observed in Xia and Hutchinson (1995).
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Fig. 2 X versus the distance r to crack tip in mode II for several K"/(Eolm); 6=13"

Figure 2 presents /%, at polar angle 6 = 1.3° versus the distance to crack tip, r//, in logarithmic
scales for t:our stress intensity factors. Each solid line represents a near-tip asymptote for the
correspondmg curve and the slope is the power of singularity, -1/(n+1). Finite element results
agree well with the asymptotic field for small r. As r increases (hence strain gradient effects
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significant), each curve eventually approaches a straight line with slop'e -1/2,
‘c):‘r::)e?:orﬁig t%;mthe cla)ssical Ky field. Transition between two fields exhibits very dllf;fzerent
characteristics for small and large loading. At a large stress intensity factor [c‘a‘g.‘, K“/(ZE)I )=.10
or 20], the curve contains another straight segment that is parallel to tl_le %nm.al straight hr_xc
corresponding to the near-tip field. It has been verified that the angula: distribution for any r in
this straight segment agrees well with the HRR field (The segment 1s around r=12.3/, see Fig. 1).
Therefore, the second straight segment on each curve con'espopds to the’HRR field. The
classical Ky field transits to the HRR field, then to the new 1;12ear—t1p asymptotic field. However,
the curve for a small stress intensity factor [e.g., Ki/(Sol'?)=1] does.not appear to have the
second straight segment, so that stresses transit directly from the classma} Kj field to .the nebv;
near-tip field in the small plastic zone, not via the HRR field. Based on .Flgs. 1 and 2., it ca:; '
concluded that the size of dominance zone for the mode II. near-tl;? as?'mptotlc f;lgl is
approximately 1if K520/ 12 and is less than 1 (due to small plastic zone size) if Ky<5Zol .

0.6 =

logo(Z/Z0)

logio(r/1)
Fig. 3 T versus the distance to crack tip r in mode I for several Ki/(Zol'?); 8=13°

Figure 3 shows Z/Zo versus /] at © = 13° in mode I for stress intensity factor K1/(201m)=5, 20,
50. 90. The maximum plastic zone size for Ky/(Sol'"2)=90 is 10601, more than 10% of the overall
ﬁr;ite element domain (r=10“I). This barely meets the s.mall.sc.alf yielding condm-on, so that
K;/(Eolm)=90 can be considered as the small scale yielding limit in the present ﬁmtﬁ/&}gnem
analysis. Similar to Fig. 2, each curve las a solid line as the r.xeax-th asymptote [Z~T 1 for
small r, and approaches the classical X field (the straight 'lme with slope -1/2) fo'r large 1.
However, as shown in Fig. 3 for K1$90201m, the second straight segmerft cf)rre:spondmg to the
HRR field is either not observed or extremely small in mode I. Angular c‘}lsmbutxons of fordall
t in the plastic zone do not show good agreement with the HI}R field either. ) Theref;(‘)ri; un ;:r
small scale yielding condition, stresses in mode I fractu‘re transit from the cl@sncﬂ K]lg ie :iot;l i
near-tip asymptotic field via a large plastic zone, not via the HRR field. IF is also o ‘ Iszerve a
the size of dominance zone for the mode I near-tip field is approximately / if K>5Zol ™.

INTERFACE FRACTURE IN BIMATERIALS WITH STRAIN GRADIENT EFFECTS

The in-plane deformation for an interface crack between dissimilar materials with §train gradient
effects is investigated. Solids above and below the interface are denoted by subscript 1 and 2.

Fracture of Materials with Strain Gradient Effects 2281
Elastic Bimaterial Systems with Strain Gradient Effects

Governing equations for each constituent are the same as (1)-(6). The elastic shear modulus and
Poisson’s ratio are G and Vg, and the intrinsic material length is I, (a=1, 2) for each constituent.
On the crack surfaces, boundary conditions in (8) become

oo (B=1m)=0, ter(0=2n)=0, me(8=2%n)=0 13)
The continuity conditions at the interface (6=0) are
[t]=0, [te]=0, [mes]=0, [u]=0, [ue]=0, [w3]=0 as

where [ ] stands for the jump across the interface. The asymptotic field near an interface crack
tip can be found similar to that for conventional bimaterials without strain gradient effects (e.g.,
Rice and Sih, 1965). It has the following structure in polar coordinates (r, 6)

t=Re[Bt®r '/2*'*], m=I/Amy@®)r'"? (15)
where Re stands for the real part, B is the complex amplitude for stresses in the near-tip field, A
is real amplitude for couple stresses, € is the oscillatory index in plane strain given by

] h{(l JREEN )/( 1 1-2v, 1) 6
e —_— —+ —_—

2n G, 3-2v,G,/) \G, 3-2v{G, (16)
(which is different to the oscillatory index in conventional bimaterials); the complex angular
function to(8) and real angular function mo(8) are given in the Appendix. The high-order
asymptotic analysis shows that the dominant, singular couple stresses (%) result from the
second order stress field. Near the tip of an interface crack, stresses and couple stresses have the
square-root singularity, but stresses are oscillatory and couple stresses are not. The near-tip

amplitudes A and B depend on the applied loading, geometry of the component, and bimaterial
properties such as moduli and intrinsic material lengths.

1 ST K] b prrrE, E——
+ tlZ/|K
e tro}i/;// % 4
* tod o m:/(|K|I*
5 — Asymp. . m.?%\]( 11//?)
2 F - me/(|K [1}?)
— Asymp.

.10 . . . i . 6 . ) . .

Fig. 4 Angular distributions of t and m for an interface crack with phase angle y=0; r=0.0039/

For an elastic material with strain gradient effects bonded to a rigid substrate (G2=%0), finite
element method is used to investigate the transition from the classical, oscillatory K field for
conventional bimaterials (e.g., Rice and Sih, 1965) to the new near-tip field in (15). The
classical, oscillatory K field, characterized by its amplitude |[K| and phase angle v (i.e.,
K=|Kle'¥), is imposed at the boundary of the finite element domain @=10*)). Angular
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distributions for stresses t and couple stress m are shown in Fig. 4 for K’s phase angle y=0 and
=0.0039/, along with the asymptotic field in (15) in which near-tip amplitudes A and B are
obtained by fitting the FEM results. The excellent agreement between numerical results and

asymptotic field holds for all phase angles between 0 and 180°.
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Fig. 5 teo versus r for an interface crack with phase angle y=45 °.0=109°
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Fig. 6 tee versus r for an interface crack with phase angle y=0°; 6 =109 °

For K’s phase angle y=45", the stress component teo at polar angle 6 =109 ° is shown versus
the distance r to crack tip in Fig. 5. Thenear-tip field is also shown in order to determine its
zone of dominance. Due to oscillation, te can be positive or negative, as marked by + and - in
Fig. 5. Finite element results agree well with the asymptotic field for small r, even on the
location for tee=0 represented by the sharp spike in Fig. 5. Finite element analysis has captured
the oscillatory nature of the field and has shown somewhat periodicity in oscillation with respect
to logio(r). No oscillation occurs for r between 1077 to 10% because the two spikes in Fig. 5
appear at small r(<0.02/) and large r(>407). It is observed that the asymptotic field in (15)
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domiqates in a zone of / around the interface crack tip. The size of the dominance zone for the
near-tip field decreases with the increase of K’s phase angle y. For y=0, as shown in Fig. 6, the
size of the dominance zone is more than 5/, while the size is reduced to 0.51 for y=90 ° (Fig. 7).
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Fig. 7 toe versus r for an interface crack with phase angle y=90°; 6 =109 °
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Fig. 8 o, m,, and T versus r for an interface crack with [K|=10%'?, y=0; 6=13.3°

Elastic-Plastic Bimaterials with Strain Gradient Effects

The ‘path-m.dependem J-integral in (11) also holds for an interface crack between dissimilar
e'las'm.:-plast_xc materials with strain gradient effects. The asymptotic field near an interface crack
tip is 113vest}gated. Without loss of generality, the constituent above the interface has less plastic
hardemng, i.e., n;>n;. Similar to conventional bimaterials (e.g., Shih and Asaro, 1988, 1989)
the near-tip field above the interface is identical to that for the same constituent bo;xdcd tc; a rigici
substrate. Governing equations and crack surface boundary conditions are the same as (1)-(4)
(7) and (13), while boundary conditions at the interface become '
u=0, uw=0, w3=0 (17)
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Displacements in the near-tip field are assumed to have a separable, power-like form

u=r"uy(0) (18)
where the power p and angular function w, are to be determined. Strains, rotations, and
curvatures are obtained from kinematics equation (2), while the constitutive law (4) and (7) give
stresses and couple stresses in terms of r and up. Equilibrium equation (1) leads to two
homogeneous nonlinear ordinary differential equations for ur(6) and ueo(6), with homogeneous
boundary conditions in (13) and (17). In order to have a non-trivial solution, the power p must
be the eigenvalue and ug be the eigenfunction. It gives the following near-tip asymptotic field

mgy| |2 J | pt 41 n?-1 }%2“*2’{sinq>(6)}
{mea}—ﬁzo{ZI(n)ZoEorY/ [an * 2n? COS2[G_(P(G)] cos(0)

t=°[r-ll(n+l)] 19)
where n=n; is the power of hardening for the upper constituent, and
1 . _,(n—l )
——lg- = 20
(0) 5 06— sin n+16 (20)

%
I(n) = :I{“—;fz—l + “22“_2 L conlge (p((-))]} ’ { ni 7c0s0 + sin[0~ ¢(0)] sin[(p(G)]}dO @1

p=45°

m./(Zol)
2 -1 0 1 2 3
Togolr/1)

Fig. 9 e, me, and T versus r for an interface crack with [K|=10Zo/'?, y=45°; 6 =13.3"

It is observed that couple stresses have replaced stresses to become the dominating singular
terms near an interface crack tip. They are not oscillatory, and have the ™+ singularity. This
is similar to conventional bimaterials without strain gradient effects where stress oscillation is
rather weak or vanishes (Shih and Asaro, 1988, 1989). However, unlike the near-tip field in
conventional bimaterials (Rice, 1988; Shih and Asaro, 1988, 1989), the new near-tip field is
governed by the J-integral only, i.e. independent of K’s phase angle y. Moreover, it has been
verified that new near-tip field in (19) is identical to Huang et al.’s (1996) couple stress-
dominated field in a homogeneous elastic-plastic solid (no interface) under mixed mode loading.
The couple stress-dominated field in (19) results from the assumption that the near-tip field is
separable and power-like as in (18). This type of solution does not exist and the numerically
calculated near-tip fields are not separable and power-like for an interface crack between
conventional bimaterials (Shih and Asaro, 1988, 1989). For bimaterials with strain gradient
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effects, finite element results in the present study confirm that stresses and couple stresses are
different to (19) near an interface crack tip. Figures 8, 9, and 10 present the effective stress o,
effective couple stress me, and T=(c2+m /%) at polar angle 8 =13.3° versus the distance to
crack tip, /1, for three phase angles of K, y=0, 45°, and 90°, and hardening power n=10, stress
intensity factor |K|=10Z¢/"2. Couple stress m, approaches zero at large r(>100/) for all phase
angles because of the remote classical K field. At small r(<0.1/), however, couple stress (m/])
for phase angle y=0 and 45° (Figs. 8 and 9) is significantly larger than the effective stress o,
hence dominates the contribution to £. Although this seems to agree with the dominance of
couple stresses in the near-tip field in (19), they are not the same. Couple stress in (19)
decreases monotonically with respect to r, while Figs. 8 and 9 do not exhibit this feature for
small r around 0.01/. For phase angle y=90°, stresses as well as couple stresses are oscillatory
so that the near-tip field is completely different to that in (19).

logio(r/1)

Fig. 10 o, m,, and T versus r for an interface crack with [K|=10Zo/"?, y=90°; 6 =13.3°
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APPENDIX

For simplicity, only to and my in the upper half plane (0<0<) is presented. They are given by
too (1+a)b, (I+a)b, -—¢; ¢, cospd
teo| J@=y)by —(a-yDb ¢ ¢ sin p®
toro (@+y,)by —(@+y)b ¢ ¢ [|cos(p+2)0
tego (1-a)b, (1-a)b, ¢, —c,]|sin(p+2)0
myp=sin(0/2),mg =cos(6/2) (22)
where p=-1/2+ie is the power of stress singularity, and € is given in (16); o=(1/2-v})p; 11=2(1-
v1); and by, by, ¢i, and c; are given by
bi=y2+1+(y2-1)p, bB2=(t-mi/t)p-(t+y2/t)p
a=(r2+1)(a+n-D+[1+m-Datnir)lpn
2= [(1-a)t+y (a+yn)/tlp-[(1-a)t-2(a+ty)/t]p (23)
where 12=2(1-v2); p=(y2+1)/(y1+1); u=G/G; is the ratio of shear moduli; and t=tan(pm).
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