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ABSTRACT

A method to determine constitutive properties of thin interface layers loaded in shear is pre-
sented. To avoid instability a single-sided double-lap shear specimen is designed so that the
stress distribution in the thin layer is non-uniform. The method is based on an exact inverse so-
lution and is intended for determination of both hardening and softening behaviour of adhesives.
The method is confined to monotonic loading.
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INTRODUCTION

Adhesive bonding of structural components is a joining method which is attractive as an alter-
native or as a complement to more conventional methods like spot welding, riveting or bolting.
The advantage of adhesive joints is that they introduce less stress concentration in the compo-
nents to be joined than the conventional methods. In most applications the adhesive is much
more compliant and has a much lower strength than the parts joined by the adhesive. Thus
failure of adhesive joints often takes place by cohesive fracture in the adhesive or by adhesive
fracture at the interface between the adhesive and the adherends. The strength of an adhesive
joint depends, however, not only on the strength of the adhesive. The stress distribution in
the adhesive will depend highly on the geometry of the joint. A lot of work, both theoretical
and experimental, has been done regarding the strength of a number of specific joints, see the
review in (Adams and Wake, 1984). The maximum strength is achieved if the joint is designed
so that the stress distribution in the adhesive is uniform. A common experience is that the
adhesive should be loaded in shear rather than in tension (peel) for the design to be successful.
Results from tests performed for a specific joint geometry are, however, difficult to translate to
a joint having a different geometry. The lack of reliable methods to dimension adhesive joints
of arbitrary geometry is probably an important reason why adhesives have not been used up to
their full potential. Kinloch (1987), for example, identifies a need to model more accurately the
complete stress distributions in complex joint geometries. This requires a detailed knowledge
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This relation is to be determined from measurements. It is assumed that the adhesive layer is

homogeneous, that is the constitutive relation (1) is assumed to be valid along the entire adhesive
layer. It is also assumed that q(u) = ku for |u| < M, where k and M are positive numbers.
lations are shown in Fig. 2a. For the system to be

Examples of typical adhesive constitutive re
in equilibrium the following differential equation must be satisfied along the system (assuming

the tensional stiffness E A to be independent of z),
1
- (2a.)
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The boundary conditions are
F du —0 Gab)
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dz |, - EAY dz|,_,

It is evident from the equations above that the original system is equivalent to a system consisting
of a single bar with tensional stiffness EA loaded by the force F and connected to a rigid
foundation via one of the adhesive layers of the original system. This equivalent system is
shown in Fig. 1b. For a general constitutive relation q(u) equations (1) and (2) together
with the boundary conditions (3a,b) constitute a non-linear boundary value problem. In the
following section an invers formula for the experimental determination of g(u) is given. The
development of the stress distribution including the issue of monotonic loading is also discussed

in the following.

INVERSE FORMULA FOR THE CONSTITUTIVE RELATION

Since, in general, the stress distribution in the adhesive layer of the test specimen will be

non-uniform, it may not seem obvious how the constitutive relation g(w) can be determined by
nt test specimen. An inverse solution for the constitutive

performing measurements on the prese
relation can, however, be derived by multiplying equation (2a) with du/dz and integrating along
the system,

()
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The integral on the left hand side may be evaluated directly which leads to
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ditions (3a,b), equation (5) may be written

boundaries, respectively, and using the boundary con
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The assumption of a long specimen (L — oo) implies that 6, = 0. Thus, for a long specimen
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where H > 0 represents the strain energy per unit length of the adhesive at the position z.
Taking the square root of equation (12a) leads to

2 H(u)
EA 13)

du _
dz —

where the sign is given by physical reasons explained later in this text. This equation expresses
a local relation between the gradient of the relative displacement and the strain energy density of
the adhesive. The equation may be separated and integrated from the point of load application
to an arbitrary point z. This leads to the following implicit relation between the relative
displacements u(z) and §,

[EA b du
e 14
TV /"@) H (7)) (14

For a linear elastic adhesive as in equation (8) this equation gives an exponentially decaying
displacement field,

u(z) =6 e Viae )

as is to be expected. This shows that the negative sign in equation ( 13) is correct for small
loads and that both « and q are positive along the entire system for a linear elastic adhesive.
In order to show that the negative sign in equation (13) is correct for a non-linear adhesive it
is first assumed that ».> 0 for all z. This is obviously true at the onset of non-linear behaviour.
From u > 0 it follows that q2>0. Futthermore from equation (2a) d%u/dz? > 0, that is du/dz is
increasing with z. From the boundary conditions (3a,b) it follows that du/dz is non-positive and
increasing with x. Thus, for «> 0 the negative sign in equation (13) is correct for a non-linear
constitutive relation. Evaluation of equation (14) for two different values of 6 (6, < &,) yields
two different values of the relative displacement (u, and w,) for a given position z. After some
manipulations this gives

Ub du b di
/"' VA (i) _A- VH (i) a16)

This equation shows that an increase of the prescribed displacement 6 leads to an increase of
the displacement u(z) at every point of the system (u, < u,). This implies further that, when
the linear relation is no longer valid, the relative displacement u(z) is still positive everywhere.
According to the previous explanation this means that the sign chosen in equation (13) is
correct also for a non-linear constitutive relation. Accordingly the entire adhesive layer is
loaded monotonically.

The development of the stress distribation is remarkably simple. By use of equation (14) it
may be shown that the distance Az between two points where the relative displacement is u,
and uy, respectively, is independent of the prescribed displacement 6 and given by

EA [w dg
Ar=e-n= VT/u. JHG) a7
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