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ABSTRACT

A new variational approach is developed which enable us to apply the ideal rigid plastic model
replenished by a fiscture criterion for evaluation of a limit load for structural elements taking into
account presence and formation of tensile cracks. The approach is based on a new variational
principle suggested by Alexandrov and Goldstein (1995). As an example of the approach
application the plane strain necking and fracture of v-notched bar under tensile loading is
considered.
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INTRODUCTION

The upper bound method (UBM) is the powerful tool, in particular, for modeling of the limit
loads and states for structural elements when using the ideal rigid plastic model. The method is
based on the variational principle of minimum of surface forces power on the real field of flow
rates related to the limit state of a body when plastic zones occur along with existence of the
rigid ones. First this variational principle had been proved for continuous fields of flow rates and
then it had been extended for the case when the discontinuity of the shear component of the flow
rate is admissible (Kachanov, 1956). Hence, the principle implies that a flow accompanied by
formation of tensile cracks is impossible. At the same time tensile cracks are observing at both
technological processes (Vilotic, 1987) and plastic fracture of structures. Hence, to model these
phenomena a variational principle is required which could admit the flow rate fields with a
discontinuity of the normal component the flow rate.

Such a variational principle will imply limit states with rigid and instantaneously occured plastic
sones as well as tensile cracks of finite area.

The mentioned variational principle could be used as an adequate tool for modeling of conditions
of structures plastic failure in assumption that fracture occuring is accompanied by instantaneous
formation of cracks of finite area and each elementary act of the crack growth is accompanied by

4 finite increment of its area. The assumptions allow one to avoid the well known paradox that
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the energy flux to the crack edge in a plasic material is equal to zero and, hence, the Griffith
criterion is not applicable for searching for crack growth conditions.

Note, that our assumptions are in agreement with criteria of the crack growth in elastoplastic
bodies implying that a limit state is attaining simultaneously in finite region near the crack edge
(see, e.g., Kfouri and Rice, 1978; Slepjan, 1981; Bui and Dang Van, 1987).

VARIATIONAL PRINCIPLE

Consider now the case when a tensile crack nucleation takes place at the stage of the plastic
deformation of the body. The material is believed to be the ideal rigid plastic one. In accerdance
with the model described in the Introduction we will assume that the plastic collapse and finite
crack formation occur instantly and simultaneously.

To evaluate the load of the crack formation and its geometric parameters we will use the special
variational principle (Alexandrov and Goldstein, 1995) admiting fields of the flow rates with a
discontinuity of the normal component of tke flow rate.

Denote by o;; and &;; the components of the stress and strain rate tensors, respectively, and by u;
the components of the particle rates.

Let S, be the surface in the body D, with the boundary oD = S, where the discontinuity of the
normal component of the flow rate, [ui],, can occur. Hence, [u;],#0 at the surface Sa. Assume
that the limit stress is constant and equal to of under the tensile fracture along the surface Sa.

Denote by t,;’, u® the loads and flow rate components at the surface S. Let the boundary S of the
body consists of the parts S, S, and Sp. vhere the loads, flow-rates and their combinations are
prescribed, respectively.

Introduce the kinematically admissible felds of the flow rates as the fields satisfying the
boundary conditions for the flow rates and the condition of incompressibility everywhere in D
except a small cylindrical region surrounding the surface S, of the potential tensile crack. It can
be proved (Alexandrov and Goldstein, 1995) the following

Variational principle: The functional
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has minimum at the real field of the flow rites among the all kinematically admissible fields of the
flow rates. Here the last integral contains the terms depending only on the loads given at the
surfaces S;, and S;,,.

PLANE STRAIN NECKING AND FRACTURE OF V-NOTCHED TENSILE BARS

Plane and axisymmetric notched bars subjected to a tensile load produce a high stress triaxiality
level near the net section. Very often thishigh stress triaxiality results in a crack at the center of
specimen (Nadai, 1950). However, this depends on the hydrostatic pressure (Bridgman, 1964)
and material properties. Ductile materials usually exhibit a cup-cone type of tensile fracture at
atmospheric pressure. At such a pressurethe notch sharpness can change a fracture mechanism.
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Ihe experiments carried out by Joubert and Valentin (1976) have shown that a ductile material
can exhibit either ductile or brittle rupture. The influence of material properties on the fracture
hehavior of notched wide plates have been studied by Ikeda (1976). Experimental results
presented in this work showed the difference in the macroscopic condition of ductile fracture
hetween the high strength steel plate and the aluminum alloy 5083-0. In order to describe the
behavior of tensile bars the pioneer stress and strain analysis of Bridgman (1964) has been
developed by Clausing (1969) and Argon et al. (1975) and Earl and Brown (1976). Finite
clement technique has been adopted by Argon et al. (1975) and Glinka et al. (1988) and others.
Majima and Furukawa (1990) have determined the development of the stress and strain
Jistributions with deformation applying a numerical method to the hardness test results. All of
ihese studies have dealt with the behavior of specimen deforming without fracture. In order to
mtroduce a fracture process into considerations a damage model is usually applied (see, e.g.,
/avaliangos and Anand, 1993). This leads to complicated equations and their solution sometimes
“how that the damage parameter influences the specimen behavior just before rupture only.

Unlike, calculations based on the proposed model can be carried out using the simple and well-
known techniques such as the limit analysis and slip-line theory. On the other hand, they take
into account the material properties, indeed, or value is a material characteristic adjusted by the
dress triaxiality level since the fracture criterion depends on the stress state. In particular, the
<lip-line solutions to a plane notched bar under tension have been found by Neimark (1968), and
Richmond (1969), and Gu (1987), and others. In the subsequent analysis here Richmond’s
(1969) solution will be used. It is important that it is the analytical solution to the nonsteady
problem with two space variables. This allows one to take into account large strains and changes
i the sharpness of a notch and, thus, to predict the rupture moment and final reduction of area
al rupture.

e configuration chosen for the analysis is shown in Fig.la and consists of the plane strain
deformation of a doubly notched plate of minimum width 2T and notch angle 26. In this figure
the region ABCDE is the current plastic zone proposed by Richmond (1969). Since a nonsteady
process is considered the plastic zone changes in time such that 6 and T are functions of time.
I'he free surface DE rotates but remains linear. In order to calculate the load required to deform

this specimen it is only necessary to know oy stress on the surface AE. This stress is constant and
cqual to (Richmond, 1969)

5, =k(2+m—20) ()
k being the shear resistance, a material constant.

A kinematically admissible velocity field admiting a crack of width 2a is shown in Fig.1b. The
plastic region A’ B’ C' D E is simply the part of Richmond’s original solution, however, the
tangent velocity is discontinuous at the surface A’ B’ €' D'. One can conclude from the well
known property of slip-line fields that oy is a constant on the surface A’ E and it is defined by
expression (2). Let us denote 6,=0, at this surface. By assumption, oy is also a constant at the
surface AA’, o,=c;. Therefore, by incorporating the fact that y-axis is an axis of symmetry and
'D’ is a free surface, the load may be calculated from the following expression

L = 26;a +20,(T - a) (3)
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Fig.1. (a) One quadrant of notched bar and plastic zone
(b) Kinematically admissible velocity field with crack

In order to apply the variational principle proposed it is necessary to consider L as a function of
a and to find its minimum value. From (3) it is clear that L has no minimum at 0 < a < T,
therefore, a minimum is reached at one of the end points, a=0 or a=T. This means that the
specimen of such type deforms with no crack up to a point of separation. Separation can occur
either by plastic flow or appearence of a crack of finite area which is equal to the current area of
the minimum section. The type of separation depends on the material properties and stress state.
From (3) it follows that a transition point is defined by the equation

G =05, (4)

If the material obeys the von Mises yield criterion then k=o,/ o3, o, being the yield stress in
tension. In this case substituting (2) ito (4) we obtain that

o __ 3 (5)

o, 2+m-20

to find the transition point. If 6, < \/Sc, /(2 + ) then the separation by plastic flow occurs. If

o, 2 V30,/(2+m—20,) then the crack of width 2T appears at the initial moment and no
plastic flow occurs (8, being the initial value of 8). If J30,/(2+1—-20,)> 0, > V30, /(2+7)
then at the beginning the plastic flow occurs which leads to changes in the value of 6. When 6
reaches a magnitude 8, the separation takes place. The value 6, may be determined from (5) at a
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o
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Knowing 8, the corresponding minimum width of plate can be defined from (Richmond, 1969)

. 1-cos6, ’
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I, being the minimum width of plate at initial moment. The neck profile is given by (Richmond,

1969)

(l +2cos 6)
(3)
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with 6, <0 <6, and

li _( l—cos()]2
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From the above considerations it follows that the stress Gy on the surface AE' is exactly equal to
the net fracture stress, Ggac, at the separation moment. Ikeda (1976) has experimentally found
the variation of Ggae and oy with the temperature for high strength steel and aluminum alloy
5083-0. For this aluminum alloy it has been found that the ratio Gea../Oy = 1.33 when the
temperature changes from -200°C to 40°C. Using this result and Eq. (5) one can obtain 0,=1.42.
Thus, the separation by plastic flow is not possible and the separation at the initial moment takes
place if 6, < 1.42. For the high strength steel investigated by Ikeda (1976) the ratio Gene/Cy
depends on the temperature. Fig.2 shows the variation of 0, and T, with the temperature
calculated by means of (6) and (7). The configurations of specimen after rupture obtained by
means of (8) are given in Fig.3 for different ratios c¢oy .
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Fig.2. Variation of 8, and T with temperature for steel specimen
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Fig.3. Configurations of specimen (one quadrant) after rupture



