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ABSTRACT

A Mori-Tanaka effective modulus theory is developed for microcrack-weakened thermopiezo-
electric solids. The theory is capable of determination of effective thermal conductivity, effective
electroelastic moduli, effective thermal expansion and pyroelectric coefficients. The microcrack
induced material constants are derived by way of a recently developed explicit solutions of
thermal-, electric- and elastic- fields for a crack in an infinite piezoelectric solid. Numerical results
are presented graphically in comparison with those by self-consistent method(SCM) and
generalized self-consistent method(GSCM).
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INTRODUCTION

Many brittle materials, such as concrete, piezoceramic, have a large number of pre-existing
microcracks. The determination of their effective material properties has been the focus of
considerable research. Current research into the development of effective methods to predict the
effective material properties has mostly concentrated on the Taylor’s method(Fanella and
Krajcinovic, 1988), the self-consistent method(Budiansky and O’Connell, 1976), the differential
scheme(Hashin, 1988), the Mori-Tanaka method(Mori and Tanaka, 1973; Benveniste, 1986), Off
all the methods, the Mori-Tanaka method is one of the most versatile methods developed in
recent years and, has several advantages over the others(Ferrari, 1991). Firstly, the method was
found to be in remarkable agreement with experimental data. Secondly its predictions are
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to the work of Benveniste(1¢87). He showed that this method accounts for the interaction of ti follows.
inclusions, under specific cirumstances, and that it is applicable to the case of materials wi ERMOPIEZOELECTRIC MATERIALS
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scheme. A critical review on the method can be found from(Weng, 1990).
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Qin, 1996) on cracked thermopiezoelectric materials. In contrast to

microcracks with given lengthand same orientation.

FUNDAMENTAL EQUATIONS

Let us consider a two-dimensional thermopiezoelectric solid, where the material is transversel

isotropic and coupling betweea in-plane stresses and in-plane electric fields takes place. Choosin,
the x;-axis as the poling direction, the plane-strain constitutive equations are expressed by

9= k.'/H/ (
G, Gy ¢y O 0 €3 € Yu
SEE Gy ¢y 0 0 €3 || €2 Y3
Gu(=|0 0 ¢, ¢, 0f2e,/=30 0 @
DI 0 0 & Ky 0 ~El 0
D, e, e, 0 0 -x,||-E, 8
or inversely
H, = Pi4q; (3)
€ S fin O 0 p}l— O ay,
=% Ja fu O 0 py |0y gy
2e,, 0 0 fu ps O fo,r+tio0 (O 4
-E, 0 0 ps By 0 |D 0
-E, Py Puw O 0 By _J D, A
and simply, in matrix form
MM=EZ-v9, )
Z =FII + b

(6)

where G, &, D; and E; are stress, strain, electric displacement and electric field respectively, c¢; is
elastic stiffness, f; elastic compiance, ey and p; are piezoelectric constants, ; and By dielectric
permittivity, g; and A; pyroelectric constants, Y and oy; stress-temperature constants and thermal
expansion constants respectively, Hj is heat intensity, ¢, heat flux, k; heat conductivity, p;; heat
resistivity, and 8 temperature change.

Since the problem is concerred with the piezoelectric analogue of the uncoupled theory of |

thermoelasticity where the electiic and elastic fields are fully coupled, but the temperature enters

the problem only through the constitutive equations. As a result of this, the effective conductivity

(or resistivity) and the effective elastoelectric moduli can be determined independently, while the

calculation of effective thermal expansion and pyroelectric coefficients requires the information

our previous study, thgngth 2a and same orientation ptar
present work focuses on developing a Mori-Tanaka theory for piezoelectric medium containingnsuing calculation and easy to exten

allel to x;-axis. This assumption is gnly for simplifying the
d to the case of randomly oriented microcracks.

Effective Conductivity

I'he effective conductivity k ,; and the resistivity p;- are respectively defined by o
g, =k H, ©
H, =p;q, ‘ i
here the superscript, o denotes the effective value, and overbar denotes its area average. For
where "
cracked medium g, and H, are defined by
- 1 &
r M
H=H +XZL ABn,dc

k=1 *

)

i (10)
9, =4, . . -
With thesz. two expressions, it can be readily shown that the effective conductivity

y y( b ’ ’ )
resistivity for a cr acked medium are de[ellllllled by( see for exalllple Yu and (21" 1996
M
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y the area and crack number of the RAE, [, is the length of the k-th
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i y y wl
medla[el seen that the determination of the effective resistivit pl’ requires a kno edge of the
n S
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0 in the cracked medium. For a llllClOCIaCk weakened medium an exact solutio for A is

B evised to determine it and thus the effective

i ima thods are usually d .
not feasible and approximate me : ; o
. istivity p; . Here and next subsection, a Mori-Tanaka effective theory is used for ev g
resistivil i
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k; (orp; ) and other effective va - ‘ i
We sytart by developing the dilute approximation model and then extend it to the Mo

theory. To this end, consider the boundary condition

(13)
q() - q()BZi
The jump A8 in (12) can be given by( see Yu and Qin, 1996, for example)
4(/0 (az—xz)”2 |x|<a (14)
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where a is the half-length of the crack, and k;>=0 is used.
Substituting (14) into (12), the dilute approximation yields
2me o
M M q
kll kZZ

where € is the crack density defined by € = Na?/ A
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Pd” =pig +

Alternatively, subjecting the solid to intensity boundary condition with

H! = H,
From (11) and (14) we have
K HO = k2 H — (k) 2T pyo
When g<<1, we see from [15) and (17) that
Ky 1

i N U m N
ki 14 2me i Tk S

which indicate the validity of dilute method is only for small values of €.
Let us now extend the

start by imposing intensity
the matrix as

H =H+ A"
where H"

Hy =2ne(H® + 8" )\[k2 1k
Using the average intensity theorem(Hashin, 1983), (9) becomes
HO = (1+2me k) 71y )(H" +A")
which yields

qM - —2ne kz”f/kﬁ’

= H°
1+ 2me kol kY

which, in conjunction with (11) provides the following expression for

where F is the “inverse” of K, and a=Fy.

dbove analysis to Mori-Tanaka method. It wil] be more convenient t
boundary condition as defined in ( 16). Assume the average intensity i

(24)
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For a cra(i(edr_nidlum, ITand Z in (24) can be given by -
nm=II o
(1¢ Z = iM +* ZL
“where . ) N -
Z; =L2I {([1+ H(i=3)]AUA, + H(2—- j)AU n, }dc
T2AE ' . -
h n={n,n O;Tl U={u, uy ¢}T u; is elastic displacement, ¢ electric potential, H(x) is the
/here n = » Ny, , U= s : . : -
~ Tl er's'de ste;l) fuznction and superscript “_” means the variable measured in a coordinate syste
cavisi ,
_local to crack line. Through use 0f£25~27), one gets o)
& Ei’lklzgl = nyaz(r)a - E_:_:LIZ;« s
FI;LLHSL = F/,TLH(ZL +ZI}

i f 1 d to Mori-
As was done earlier, we begin with developing the dilute formulation atr;d (tlk;e;li:l);tetr;l dto o
y | 1 1 i two methol
(18 1ynaka method. Finally, a comparison 1s made to see if these
results in the case of piezoelectric medium.

” . i i sl
I'he dilute approximation. We start by imposing stress boundary conditions given as G,, =0,

The dilute s g ! e

sthers equal 0. In this case (29) reduces to (see Yu and Qin, 1996, for examp e)

where X . is the component of following matrix( Yu and Qin, 1996)
is the perturbed intensity due to the presence of the crack. The Mori-Tanaka metho !
assumes that introduction of one single crack in the matrix will result in a value H given by

(30)
* M
(19 f4a=f47+mx|| /12
(€1))
N " i i t, A and B
d the superscript “-1”" maens the inverse of matrix, “Im” stands for the imaginary part,
an

i f following
(20 e well-defined matrices(see Chung and Ting, 1995, for example), p; are the roots o

cquation(see Yu and Qin, 1996, for details)

(32)
2 -
@1 a,p® +a,p* +a,p* +a, =0

i =g 0=p° thers equal 0, one may obtain
Successively, let 65, =65 or D, = D"and o q

5 ={f3§‘}+£€_{ng} (33)
(22) P;a PzA; 2 Xy

. or i (34)
22 a8 [5' =BM +meXyy /2 - . —'YO or
. 387 F33 ; conditions given as 2€2= Y,
e = . (23) Alternatively, subjecting _the medium to ;)EP lzoundar}’
2 s
kn l+ome ks (k)Y ¢), =¢° orZj, =—E" and others eql:al 0, (28) yie .
It is found that the equaion (23) is identical to the first expression in (18). However, the C =(1-meX " 12) Cu} (
validity of (23) extends to large values of € to non-dilute conditions. e B e e
Effective Elastoelectric, Thermal Expansion and Pyroelectric Constants ot . cl";
_ . . ¥ XXMM 4 XM e y2)cH A%
Consider again the representaive area element. The effective material properties are defined in the Cyy = (1=TE( Xy Cy BTN ‘v
following fashion en €3
=3 >y oo 2 L—1 L 33
MN=E'Z-y06 or Z=FT+0'0

or
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e:l M M MM e"A;’
N =(l—-7t£(Xne“—X“E33 )2) ‘M (37)
33 33

Egns. (30) and (33~37) constitute the governing equations of dilute method.

The Mori-Tanaka theory. It is convenient to begin with considering the displacement boundary
conditions given as 2€,,= ¥ and others equal 0. In this case the jump AU in (27) can be found in
(Yu and Qin, 1996)

Au, xN
{AU} =4 Au, =X (a’ —x?) My (38)
a0 ) X,

Similar to the heat conduction analysis in previous section, we assume the average strain in the
matrix as
¥ =y +qM (39)
Substituting (39) into (26) leads to
SM o —R&X,Tcﬂﬁ 0
T l+mex e 2
which, in conjunction with (28) yields

Cul _ ! < @)
es 1+M|7C4A:/2 ey

Similarly we can obtain other effective elastoelectric constants by letting €3, =€° or z,, =-E°

(40)

and others equal 0, which gives

Cf; 1 Crl;’
» M
Ciy 0= c (42)
P leme(XH X e )2 B
33 €33
or
£ l+me(x el -XYeky2 el

Egns. (41~43) constitute the governing equations for determining the effective elastoelectric
moduli of a cracked body. It is found from (35~37) and (41~43) that these two methods give
almost identical results for small values of €, but the Mori-Tanaka method can give almost
accurate results for relatively large values of €. Once k; and E" is obtained, the effective a" can

be determined by (Yu and Qin, 1996)

23 - b,
a;_ za; _me ): (44)
Y3 Y3 2 b,
where b={b, b, b;}" is defined by(Yu and Qin,1996)
b=-2Im(A,-AB™'B,) (45)
where

A0=D_|(p;){'Y|+P;'Yz]
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D(p)=Q+(R+R")p+Tp’
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and where . |
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NUMERICAL RESULTS |
piezoelectric ceramic(BatiO<)(Dunn, 1993, Of' Yu and Q.mi
is presented in Fig. 1 for various values of
. » It

As illustration we consider a cracked | 5

1996). The normalized effective modulus ¢, /<“.. e R 1 (o coragimisnn
density €. The sclf-consistent and GSC solutions are also given lc. i

‘rac 181 . b S18 e g . i = ' ‘ A

: I‘;’Lk (;:l 3111 that the curve for Mori-Tanaka method are slightly higher t

is found ag: d

Mori-Tanaka

Fie. 1 Effective modulus vs crack density

! i salculate > effective materia
¢ i-Tanak: ‘mulation to calculate the ¢ : ;
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previous paper, the presented version of Mori-Tanaka’s method is of striking simplicity and needs
very little computing effort. Although the results are confined to the case of plane strain and all
microcracks with the same length and same orientation, it is easy to extend the procedure to other
plane problems, such as the case of u, = u; (X, X, ) # 0 and the cracks being randomly oriented.
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