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ABSTRACT

The aim of this paper is to provide the expressions of Bueckner’s fundamental three-dimensional
crack-face weight functions for a semi-infinite interface crack in an infinite body. The method of
solution avoids the calculation of the full mechanical fields in the elasticity problems implied but
concentrates instead on the sole feature of interest, namely the distribution of the stress intensity
factors along the crack front. It is inspired from previous works of Gao and Rice on the one hand
and Leblond, Mouchrif and Perrin on the other hand. The results are given in a totally explicit,
analytic form to the first order in the "bimaterial constant” €. Their only non-elementary feature

is the appearance of an indefinite integral of the type I ﬁ"+2 dz.
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INTRODUCTION

Many authors have given the expressions of Bueckner’s fundamental three-dimensional weight
functions for a semi-infinite crack in an infinite homogeneous (isotropic) elastic body. The most
complete work in that field is that of Bueckner (1987) himself, who did not only provide crack-
face weight functions (that is, for point forces applied on the lips of the crack) but fully general
weight functions (that is, for point forces applied anywhere in the body). One remarkable feature
of Bueckner’s method of solution is that he greatly simplified the mathematical treatment by
concentrating on the sole feature of interest, namely the distribution of the stress intensity factors
(SIFs) along the crack front ("special” method in his terminology), instead of looking for the
complete solution of the elasticity problems implied ("general” method).

For a semi-infinite interface crack, i.e. one lying between two (isotropic) elastic media with
different elastic constants, only elementary two-dimensional weight functions are known. The
aim of the present paper is to provide three-dimensional ones. Only crack-face weight functions
will be calculated. The method of solution will be of ”special” type; it is not directly inspired from
that of Bueckner (1987), however, but from works of both Gao and Rice (Rice, 1985, Gao and
Rice, 1986) and Leblond et al. (1995). Considering its complexity, one can reasonably conjecture
that any ”general” method would be inextricable.
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The treatment looks like some kind of big “self-consistent” loop; it consists of two main
steps. In the first one, one looks for first-order expressions of the variations of the stress intensity
factors along the crack front arising from some small but otherwise arbitrary coplanar perturba-
tion of the crack front. The method is similar to that used in the works of Rice (1985) and Gao
and Rice (1986) in that it relies on Rice’s formulation of the Bueckner weight function theory,
which relates crack-face weight functions to infinitesimal variations of the displacement discon-
tinuity across the crack arising from infinitesimal motions of the crack front. It is more intricate,
however, because whereas in the case of a homogeneous body considered by Gao and Rice, the
expressions of the crack-face weight functions were known from the beginning, only very basic
properties of these functions are knowna priori for an interface crack. Because of their homo-
geneity properties, the crack-face weight functions appear in the formulae obtained in fine for
the variations of the SIFs only through some unknown constants v4+,v—, Y17, v=,Y connected to
their asymptotic behaviour when the point of observation of the SIFs goes to infinity.

In the second step, one applies these formulae to some special loadings, namely those which
serve for the definition of the crack-face weight functions, and some special motion of the crack
front, namely an infinitesimal rotation about the normal to the crack plane. The idea here, which
derives from the work of Leblond et al. (1995), is that such a movement preserves the shape
of the crack, although it modifies its orientation, so that the resulting variations of the SIFs are
expressible in terms of the spatial derivatives of the weight functions. The result consists of in-
tegrodifferential equations on these functions, which (of course) involve the constants v4,7y—,
Y111,7-»7- Taking the Fourier transforms of these equations in the direction of the crack front,
one obtains ordinary differential equations on the Fourier transforms of the weight functions.
Performing a first-order expansion withrespect to the “bimaterial constant” e, one finds that the
solution can be expressed explicitely; this solution of course depends on the constants v, v,
~Y111,7=,7- Accounting for the fact that (as mentioned above) these quantities are also connected
to the Fourier transforms of the weight functions through the asymptotic behaviour of these func-
tions (final “’self-consistent’”” condition), and also for the fact that the Fourier transforms of the
weight functions must necessarily vanish at infinity, one gets the values of the constants 74,7,
Y111,%=,7, and the full (first-order) solution follows from there.

DEFINITIONS AND NOTATIONS

The situation considered is depicted schematically in Fig. 1.a. Materials 1 and 2 occupy the half-
spaces y > 0 and y < 0 respectively. The crack lies on the half-plane y = 0, < 0 and the two
materials are perfectly bonded on the half-plane y = 0, = > 0. For any loading, the (real) SIFs
K(z), K71(2), Krrr(2) at the point z of the crack front are defined in the same way as in the
work of Hutchinson et al.; that is, the components of the discontinuity of displacement [u](z, z)
= u(z,0%,z) — u(z,07, z) at the point (z, z) of the crack are given by

11— 1—-v T : o
bty + uxls) = ( (1/12)/i1i€_:£osh(trze))/u2 K(z) } g |2, K(2) = (K1 +iKi)(2)
[u:l(z,2) ~2(1 /1 + 1/p2) Kr11(2)/|z| /27

(1)
for || — 0, where
1 pr+(3—4v))u,

e= —fn————— = 2
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3D Weight Functions for Interface Crack 1813
a. b.

\\\6.-.—._—-‘
o |
+ b y
(x,0,0) = @ X
G
\
Application ‘}
0
of the forces l\ 0.02)
/ =
Observation B
of the SIFs 3
|
30
z ¥

Fig. 1. a: The general problem envisaged. b: Coplanar rotation of the front.

is the bimaterial constant. Also, the expression of the local energy release rate G(z) is

G(z) = AMK()> + AN K3(2), A=

Q-v)/m+ A —v)fp2 1 (i }_)
4 cosh?(me) U T 4\ w2/
(3)
Finally, the crack-face weight function hyi(z, z;2") (p = I, II,I1I;1 = z,y, =) is defined
as the pth SIF generated at the point =z’ of the crack front by unit point forces exerted on the
points (z, 0%, z) of the crack lips in the direction *e;. Because of the invariance of the problem
in the direction of the crack front, these weight functions depend on z and z' only through their
difference: hpi(z,z;2") = hpi(z, 2’ — 2).

ELEMENTARY PROPERTIES OF WEIGHT FUNCTIONS
Parity with respect to z' — =

Since both materials are isotropic, a new solution to the equations of elasticity can be generated
from an old one by applying a symmetry with respect to the Ozy plane to the geometry, the
loading and the displacements. It is easy to see that this implies that the functions hjq, hiria
(a = z,y) and hyy. are even with respect to z' — =, whereas the functions his hir-and ko
(o = z,y) are odd.

Homogeneity

A new solution can also be obtained by multiplying all distances and displacements by any posi-
tive factor . In such a transformation, the stresses remain unchanged, and point forces, which are
homogeneous to a stress times an area, are multiplied by AZ. It follows from there and linearity
that if all distances are multiplied by A while point forces are kept unchanged, the displacements
are multiplied by A~!. Equations (1) then imply that the SIFs K'(z) and Kjys(z) arising from
these point forces are multiplied by A~%/2 ~* and A~3/2 respectively. This means that the func-
tions (hy; + thipi)(a,z' — z) and hyri(z, ' —z) (¢« = z,vy, z) are positively homogeneous of
degree —% — 1€ and —% respectively.
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Bueckner-Rice’s theory

Rice’s formulation of the theory of Bueckner’s weight functions (see e.g. Rice, 1985) for homo-
geneous cracked materials can be extended in a completely straightforward manner to the case
of interface cracks. One thus considers an initial situation where an arbitrary loading generates
some distribution of SIFs K1(z), Kr1(z), K1r1(z) along the crack front, and an infinitesimal
coplanar perturbation of the crack front characterized by the orthogonal distance Sa(z) from the
initial crack front to the new one (see Fig.!). Adding some point force +P = +P;e; at the points
(z,0%, z) of the crack lips and letting P — 0, one then finds that the variation of the displace-
ment discontinuity across the crack arising from the motion of the crack front (in the absence of
the point force) is given, to first order in the perturbation, by

+oo 9G , ;
§uil(z,2) = /‘ aPi(Z'7P = 0)éa(z")dz

Hee - 1 1 - ! : it & (4)
=2/ (A KNkt — 2) + K (e, o' = )]+

J —oc

FA'Kyp(2)hyni(e, 2 — 2)} ba(z)d, 1= 2,9,z

Asymptotic behaviour for |z| — 0

Let us consider the case where the function §a is zero except in a very small interval |z’ —n, 2" 49
with centre at z’ # z and not containing z. The integral 2 f:r;:{...}éa(:’)d:’ in eq. (4) can then

be replaced by {...}6 A, where 6A = 2[;,:“7 Sa(z")dz". Now since a is zero in the vicinity
of z, 6[u](z, z) behaves in the same way as [u](z,2) for |z| — 0 (see e.g. Rice, 1985); that
is, 8 [uy + tuz](z,z) o |z|1/2 +i€ and 6 [u.](z,z) ||*/? where the symbol "o means
proportional to”. Since the SIFs K (2", K1(z'), Ip1(2") in the expression {...} can be varied
independently, this implies that

(hpy + ihpe)(@,2' = 2) o |2/ H55 hpe(2, 2" = 2) |z|'/? (p=I,II,IIT) ()
for |z| — 0.

Combination of the previous properties

It follows from what precedes that the fanction hpry + thyry + i(hiz + thrre) = hpy +thy +
i(hrry + thrrz) is even with respect to ;' — z, positively homogeneous of degree —% — 1€, and
behaves like |¢|'/? + for |z| — 0. Thefunction hy — thyry + (ks — thrry) = hiy +ihre —
i(hrry + thrr,) verifies similar properties except that its degree of homogeneity is —% + ze. Let
us therefore put

[hry + ihrry + i(hre +ihi1s)] (2,2' — 2) = [h1y + ihrz + i(hiny + ithir))(x, 2" = 2)
= (Jz|/27)' |2 Hi(z, 2" = 2)
[h]y = ih[[y + i(h]z - i}L][,.)](I,Z’ = ) = [th + ih]t e i(h][y + 1‘/11]1.)] (.T,:’ = :)
= (|z|/2m)? 2| H_(z,2' — 2) .
(6)
The functions Hy and H _ are even with respect 1o ' — z and positively homogeneous of degree
—92_ 9 and —2 respectively. Furthermore their limits H,(0,2' —2),H_(0,2' —z) for |lz| — 0

are neither zero nor infinite; since they are also even and positively homogeneous of degree
—92 — 2ie and —2, they are of the form

Ho(0,2' — 2) = vy |2 —2| 7275 H_(0,2' —2) = T ) (7)
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where 74 and v_ are unknown complex constants.
Let us also define some functions H;;y, H., H in the following way:

(hirry +ihirre)(z, 2" — 2) = (|z]/27) Pl Hprr(z, 2" — 2) 5
(hr:+ ihrr:)(z,2' —z) = (]:r|/27r)1/2Hz($,z' —2); (8)
hrrr=(z,2' —2) = (|z|/27r)1/2H(z,z' —z);

note that the function H is real. Reasonings similar to that just presented show that these functions
verify the following properties: Hyrr and H. are odd, and H is even, with respect to z' — z;
they are positively homogeneous of degree —2 — ie,—2 — ie and —2 respectively, their limits
Hrr(0,2' = 2), H.(0, z' —z),H(0,z' — z) are of the form

Hy(0,z' —z) = vprp sgn(z' — 2)|2' — 2|2t
H.(0,2' — z) = v: sgn(z' — 2)|z' — 2| 727 (9)
H(0,z' —2)=~(z' — z)72

where sgn(z) denotes the sign of = and the unknown constants s, 7 are complex whereas v
is real.

Parity with respect to €

One can also obtain a new solution to the equations of elasticity by applying a symmetry with
respect to the Ozz plane to the geometry, the displacements and the loading; it must then be
noted, however, that the two materials are interchanged in this transformation so that the sign of
the bimaterial constant e changes (see eq. (2)). Detailed inspection of the changes of the various
loading conditions and the resulting displacement discontinuities then shows that hyy, hyrz, hiiz,
hirrz,hirr. are even, and hyry, hirry, hiz, k1. odd, functions of €. The definitions (6), (8) of
the functions Hy, H_, Hrr7, H., H then imply that they obey the following properties:

Hy(—€x,2' —z)= Hi(ez,2' —2); H(-€z,2' —2)= H(ez,2' — 2)
Hif(—€2,2' —2) = — Hulg .2 — 2); Ho(— 2,2 — 2) = — Hu(€32,2' = 2)
(10)
where indications of dependence upon € have temporarily been introduced. By egs. (7) and (9),
the constants y4+,v—, Y11, ~:,~ verify similar properties:

qi(—€) = v2(€); v(—€) = v(€); vrrr(—€) = —vrr(e); 1:(—€) = = 72(€). (11)

These properties mean that ReH,, ReH_, H, ImH;;, ImH. are even functions, whereas
ImH,, ImH_, ReHy1, ReH. are odd functions, of e. Similarly, Revy, Rev—, v, Imyrrr,
Im~ -, considered as functions of €, are even, whereas Im~,, Imv—, Reysr1, Rey: are odd.

VARIATIONS OF THE SIFS RESULTING FROM AN INFINITESIMAL COPLANAR
PERTURBATION OF THE CRACK FRONT

Just as in the works of Rice (1985) and Gao and Rice (1986), we begin by considering an infinites-
imal coplanar perturbation éa of the crack front which is zero at the point z. The variations 6 X (=),
§K111(z) of the SIFs at that point can then be directly related (up to some multiplicative fac-
tor |z|'/2 +% or |z|*/?) to the variations of the displacement discontinuities 6 [uy + tu; (z,2),
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6 [u.](z, 2) for |z| — O; attention must be paid here to the fact that because of the possible rota-
tion of the crack front, the orthonormal basis “adapted” to the new front at the point z is slightly
different from the basis (e., ey, e.) (see Gao and Rice, 1986). Using the fundamental formula
(4) of the Bueckner-Rice theory and the definitions (6), (8;) of the functions H, H_ and Hyy,
one thus finds that § K'(z), for instance, is related to the integrals
+oo +oo

“H_(z,2' —2)K(2')éa(z")dz";

oo

Hy(z,z' —z) K(2'")da(z")dz";

+ oo
Hy(z, 2" — 2)Kqp(2')éa(z")dz’
—o0
in the limit |z| — 0. The problem is thus reduced to the study of such limits.
. 5 s - —+ oo
The treatment of the first two integrals is simple. One writes [~ 7(...) as [g_(._, .4p(-)

z+n i I . %
+ fzfn (...) where 7 denotes an arbitrary positive number, which is to be shrunk to zero in fine.

Performing a first-order Taylor expansion of K (z')da(z") or K(2')éa(z") around the point z in
the second term and accounting for the fact that the functions H and H_ are even with respect
to z' — z, one finds that this term vanishes in the limit » — 0. Furthermore, by egs. (7), the first
term tends in the limits |z| — 0, then 7 — 0, toward the Cauchy principal value (PV) of the

integrals [*°° v, K(2') |2 — 2|7 #6a(2")dz" and [*77 v K(z')(z' — 2)"?8a(2")dz".

The treatment of the third integral is more complex because the function H;; isnoteven but
odd with respect to z’ — z. One must reason here in two steps. In the first one, one considers some
Sa(z") which is a linear function of 2’ — z in some interval [z — 7, z 4 7] with centre at z, and zero
outside it. This allows to determine the behaviour of the integral f:j: Hir(z, 2" —z)(2' — z)d2’
for |z| — 0. The second step consists in considering again an arbitrary éa (still supposed to
be zero at the point z, however), splitting the original integral in two as above and taking the
limits |z| — 0, then » — 0, in both terms. One thus finds, using eq. (9;), that in the limit
|z| — 0, that integral is replaced by the finite part, in the sense of Hadamard (F'P), of the
integral fj:: v Krr(2)sgn(z' — z)|2" — z|727"6a(z")dz’, i.e. the limit, for n — 0, of the
same integral but taken over R — [z — 7, z + 7] plus the quantity 22y ;K 77(2) %82 (z)n=.

The hypothesis that da is zero at the point z is finally removed, just as in the works of Rice
(1985) and Gao and Rice (1986), by simply taking, as a reference crack front, that obtained by
shifting the original one by a uniform amount §a(z). The final result for § K'(2) reads

. dK 1+ 2ie oo K(Z' i Sa(z") — Sa(z
6]\(3): E(Z)éa(z)_*_m ‘/’/~ ’Y+|-2’-’“—(T|)2{;+7—A(ZI) a((~,)_ Z)az( )dzl
1+ 21 11 o L ] ' 60,(.2’) —éda(z)

4 cosh(me) 1 —v FP_/_OO Ki11(#) sgn(" = 2) |2/ — z[|2+ie dz.
(12)

In this equation, (dK'/da)(z) denotes the derivative of I{(z) with respect to the crack length for
a uniform shift of the crack front equal to éa(z) (note that § K (z) reduces to (dI\/da)(=)éa(=)
for a uniform §a). Also, v denotes the quantity defined by

A (T—v)/p+ (1 —v2)/pa2
l—v=-= .
¥ " (U + 1pa)eosh?(re) )
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(the notation is coherent in that for a homogeneous material, v is identical to Poisson’s ratio).

A similar reasoning leads to the following formula for 6 Krr 1(z):

- +oo Fy nN_§
§K111(z) = KN \sa(z) + 7 pv/ Km(z')i(z,)—‘-’fi)dz'
da . 4 5 (' —2) (14)
1- o ba(z') =6
+_4_v Re {’yz FP /_oo K(z')sgn(z' — z)a—‘ilzzz——lz%j)dz'} .

INTEGRODIFFERENTIAL EQUATIONS ON THE WEIGHT FUNCTIONS

Let us consider the special loading which consists of two unit point forces applied on the points
(z,0%,0) of the crack lips in the direction *e;. The pth SIF at the point z of the crack front is just,
by definition, h,;i(z, z). Now let us consider the motion of the crack front defined by da(z') =
56 (z' — z) where 86 is an infinitesimal quantity; this motion just represents an infinitesimal
rotation of that front about the axis containing the point z and parallel to e, (Fig. 1.b). Since the
shape of the crack does not change in the transformation, the new SIFs at the point z are still tied
to the weight functions. However, in the frame “adapted” to the new orientation of the crack front,
the distance (initially |z|) from the point of application of the forces to the front has changed by
an infinitesimal quantity, and that (initially z) from this point to that of observation of the SIFs, as
measured parallel to the crack front, has also been modified. Furthermore there is also a change
in the apparent direction of the point forces in the new adapted” frame. When accounting for all
these changes, one finds that the variations of the SIFs at the point z can be expressed in terms of
the spatial derivatives of the weight functions, plus these functions themselves (plus, of course,
a multiplicative 66 factor). Using the definitions (6), (8) of the functions Hy, H_, Hyjr, H.,
H and egs. (12), (14), one thus gets integrodifferential equations on these functions. Since they
are all positively homogeneous of various degrees, one can use Euler’s relation to eliminate their
derivatives with respect to z. Taking = = —1 and putting W, (u) = H,(z = -1,z = u),
W_(u) = H_(z = —1,z = u), etc., one finally obtains the following equations:

3 1+ 2:ze
2 |/ ! e 3 ! 4 = —
(14 u* )W) (u) + <2 + 1.5) uWy(u) +iWe(u) S coshlne) X

“+o0 wW_ . d 1 2 “+oo d '
{PV] [’y+—l)—+7—W+(u')] = +MFP/ WIII(U’)‘_&,TZ"T_;I}

Ju! — ul|?e wW—u l-v
(15)
(1+ )W (u)+ (% - ie) uW_(u) 41 W.(u) =
1 — 2ie e . — du’
7 1 ' _u 21€ —W_ 1
8 cosh(me) {PV/:w [7+ el — e e e W )} u' —u (16)
29111 Foo , du!
= WL ! ...,
+2L pp /_w Vit ) i |
3 i , o +oo du’
(1 +u2)Wipp(w) + SuWirr(u) +i Wu) = % PV Winr(u')— “ -
- 0 (17)
1-v oo , du’ = Hee du'
: (W)— 4+ 5. FP T e MY
+12 {m A /_w (o )lu,_up_,(},
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- . "
(1 + )W (u) + @ e ie) uW(u) + %W.,.(u) - ; W_(u) = éc—;ﬁx

+o00 Wz ! ! 2 +oo du'
PV/ 7+‘u_,ﬁ pwiy| 7’”FP/ W) eees § ;
—oo

5 Au\2ie u —u 1—v lul_u‘1+z'e
. (18)
(1+u®)W'(u)+ EuW(u) —Im Wyy(u) =
+oo ! +oo ! (19)
o . du 1-v — , du
ZPV[w W(u)u,_u +—4——Re{7ZFP » Wz(u)]u’—ull'i‘}'

EQUATIONS ON THE FOURIER TRANSFORMS OF THE WEIGHT FUNCTIONS
Differential equations

Let f(p) = fj:: f(u)e’P*du denote the Fourier transform of any function f(u). Taking the
Fourier transforms of egs. (15) to (19), one obtains the following system of ordinary differential
equations on the functions W..(p), W-(p), Wirr(p), W.(p), W(p) :

— 1 — — 142 inh .
Wy + (5 . ie) W, — pW, + W, .08 [— — e(”)m ~ 2ie)x

i)
2ie{ = 4vr me . e | .
xsgn(p)|p|* W- — my- sgn(p)W4 + - v)COSh ( 5 ) (1 —zé€)lp| W]”] :
— 1 — — = 1-2i — sinh
pW_”+ — + 1€ W..’—pW_— W. e -7+ Mr(l—i—?ie)x
2 8 cosh(me) € (21)
e — o 470w me emtem= |
21€ _ _ s 1€ 3
xsgn(p)lpl Wy — - sga(p)V- — 7' U)cosh( =) T+ o)l Wul] ;
— 1 — — — ™y —
PWrr +5Win - pWrrr + W = _TSEU(P)WIII
1—v TE . e — . e (22)
1 Yeosh (55) [1:I = ie)lpl“ W= = 7:T(1 + ie)lpl Wsl s
€ 2
_ 1\ = U P 1+ 2ie sinh(7e) :
. 1 _ g W = T{1—2
W * <2 26) We —pWs 2W+ 2 W 8 cosh(me) [7+ € ( 1€)x
s ~ 4 ) o
xsgn(p)|pl W — - sgu(p)W. + g3/ pyeosh () (1 - ze)|p|“W} :
(23)
=, l=, = — m = 1l-v me — ! —ie T
pW"+ W' —pW +ReWiry = —~psgn(p)W -, cosh ( 2 ) Re [7, T(1 + ie)|p| ‘(42;])

where T’ denotes the gamma function and indications of dependence of the functions W, etc.
upon p have been discarded for shortness. The derivation of these equations is elementary except
that it requires to evaluate integrals of the form P f0+°° e*dz /z'*®, which give rise to the I’
function.

Asymptotic behaviour for p — 0

It is easy to calculate the values of the functions ﬁ’\, Ww_ s W//I\”, V/IZ, W for p = 0, because they
are identical to the integrals, from —oo to +o0, of the functions W, W_, Wy, W., W, which
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are tied to the well-known values of the two-dimensional weight functions for the semi-infinite
interface crack.

This information can be refined in the following way. Consider the asymptotic behaviour of
W (u) foru — +oo for instance; because of the homogeneity property of the function H.i(z,z),
Wi(u) = Hy(-1,u) = Hy(—uwutul) = w22 (—umt 1) ~ uT2T2EHL(0,1) =
y4u~272 (by eq. (7y)); similar results hold for the other functions. Also, note that because of
the parity properties of these functions, the Fourier transforms VV:, W_, W are even whereas
W11 and W. are odd. Transforming then the integrals from —oo to +-co defining the derivatives
of these Fourier transforms into integrals from 0 to +oco and accounting for the behaviour of
W (u), etc. for u — 400, one obtains the asymptotic behaviour of ﬁ/:l(p), etc., forp — 0.
Accounting for the values of VT/:., etc. for p = 0, one finally gets:

— sinh(me) T'(1 — 21¢ ie —

Wap) = s 2 “ﬁo—) lpI"*2 + o(p); W_(p) = 4 cosh(me) — 77— p| + o(p);
— vr me\ (1 —i¢€) ie
Wiir(p) = —2—*}“)3}1 (7> (1—+—ie—sgn(P)|Pll+ + Crrrp+o(p);

—~ Yz me\ I(1 — €) ie , s

Wo(p) = ~22cosh () T sgn(plpl ™+ + Cop + o(p); W(p) =2 = ol +0(p)

(25)
where C;; and C. are extra unknown constants.
Equations (25) can be considered as the »self-consistent” conditions which close the system:

they say that in addition to intervening in the differential equations for the functions Wy, etc.,
the constants v , etc. are also tied to their asymptotic behaviour for p — 0.

Consequences on the constants v_, 77, 7z, Crrr, C.

Inserting egs. (25) into egs. (20) to (24) and identifying terms of dominant order, one gets some
informations about the constants y_, vrrr and 7., plus the values of the constants Crrrand C. ¢

(1+42ie)y- € R; (1+2i€)yrrr+(1—v)cosh(me)y. = 0; Crir = —4; C. = —
— 21€

. (26)

ZEROTH ORDER SOLUTION

Since the bimaterial constant e is always small in practice, it is reasonable to look for an expansion
of the solution of egs. (20)-to (26) in powers of that parameter: X = X0 L eX' + X2+ ..
where X denotes any quantity. At order 0, i.e. for e = 0, this solution is expected to be identical
to the well-known one for a homogeneous material, that is, with the present notations:

4v 1—u? 4 4v 1—u?
W) = s e W) = : ;
+() (2 —v) (1 +u?)?’ ~(u) (14 u?) * (2 —v) (1 +u?)?’
v u 2 4v 1 —u?
wo = WO = e e Oy - - —_—
Fr(w) = W) = ice Sy W =t T rE— o) (L v
(27)

which implies, by the definition of the Fourier transform chosen and egs. (25) and (26), that
=% 50 w0 6 1o - 4vlp| 4ulp|  4vp  4dvp 4v|p|
W, W, W ,W?,WO) —emhl (VP Buipl P TUP g 5
( +1 T =2 T TS (p)=e 2-v’ +2—v’ 2—v’ 2-v’ 2—v
(—4 +4v,4)
(28)

1
(1472715 7°) = ;(2—_7)(41’78— 80,0,0,4 4 20); (Vi1 78) = 5o
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(note that knowledge of the zeroth order functions WP, and @ does not only imply knowledge
of the constants v9,; and 72 (= 0) but also of the first order ones 4} and 41, since 7 and
~. are divided by € in egs. (253 4)). Itis indeed easy, though tedious, to check that this solution
does satisfy egs. (20) to (24) for e = 0. The real or imaginary character of the functions W9, etc.
and the constants 7}, etc. could be anticipated a priori from the parity properties with respect to
e mentioned above.

FIRST ORDER SOLUTION

Since W(u) = H(—1,u) is even with respect to ¢, W1(u) is zero, so that its Fourier transform

W1(p) is also zero; similarly, v' is zero. Accounting for these properties and expanding egs.
(20) to (23) to first order in €, one gets

—_—r 1/\’ m —_— —— m —_— 1 —_— —_—

1 a7 78] 1.0 1 RN 7 TS 4 00 SR 7 R 7 7 M L
pWi +5Wo +(8’Y— p>W++WZ+8'y+W_ 2(1_U)W111—1W+ 3 e X
— 1 : 1 2

0 T oo: 0 NGO T 0. W(C +2)v11 + Vi g0
WO tlnp — 5(22(C+1)7++7+)WE +sz?II€np+ 51 - 0) 11 WO, ;

(29)
— ] T —_— - T 1 — — T
Wl Wi a0 1 T, T ol R0 00 SR 772 WL 7 70} T4
P+ 5= +(87— p)W—+Wz+87+W++2(1—u)W”’ W2 g0 X
_ 1 - 1 2
) T io: 0 1IN0y s I g0 i(C +2)711 + Vi e
Wi inp + 8(22(C+1)“/+ +y3 )Wy ‘Hman&lzﬂ- 51 - v) Wit
(30)
—n 1 — T — (1_U)7§ — =
PWip + QW}H + (ZVO —P) Wi+ 7 (Wﬁlt - Wl) = (31)
l1—v . . ey M e
i (ivitmp +iCvyl +72) (Wi +WE);
— 11— T — 1 — — — —
pWI +5WI 4+ (g(viﬂ‘l)—p) W1+ 5 (Wh+ W) =iw? +i;4r—’inf£'np
(32)

T — ] — i(C + 27 + Vi =55
4 2 C+1 0 o 1 VVO—*—Z 111 Woen 117 IIIWQ
g(2(CHys +y)We Higg Ty Wier+ T )
where eq. (261) has been used and C is Euler’s constant (the appearance of which arises from
the property V(1) = —C). Only positive values of p are considered here for simplicity; this is
sufficient because of the parity properties of the Fourier transforms W, etc. with respect to p
mentioned above.

Quite remarkably, the system of coupled equations (29) to (32) on the functions 171/?, I7V\1

—

Wi, ﬁ/? can be uncoupled by considering the functions 13, @, ﬁ, S defined, for p > 0, by

Bp) = (WL + W2 — 2W1)(p); Op) = (W + W2 + 2W1)(p);

R(p) = (W1 — W2 — 23, )(p)i 5(p) = (1= )W = WD)+ 2W]1,) (o) 59

indeed, combination of egs. (29) to (32) yields the following equations (for p > 0) on these

functions: ~
b -G E)-()
e+ 35+ 7 (50) - (56))
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where P(p), Q(p), R(p), S(p) are "second members” the expression of which is easily deduced
from the right-hand sides of egs. (29) to (32). Remarkably again, each of these equations can be
integrated analytically by elementary means. The solution for the function P, for instance, reads

& P =29 q ’P(r)e’ P o—29
P(p) = € / d / dr + AeP / dg + A'e? (35)
(p) 0o Va4 1 0o V4

where A and A’ are arbitrary constants, and a similar formula of course holds for R. Examination
of the behaviour of ﬁ(p) for p — 0 reveals that A and A’ must be zero. Since the term in factor
of e? must then vanish for p — +oo (otherwise ﬁ(p) would not tend to zero at infinity), one gets
the following necessary condition on the “second member” P :

+o0 8_2q q P(T‘)er o
/0 T dq/o v dr =0; (36)

a similar condition holds for R. Also, the solution for @ is
~ P 824 q P e?q B
Q(p) = e‘p\/ﬁ/ —:;—/—qu/ Q(r)e~"dr + Be*”\/ﬁ/ Z_dgq— —e? 4+ B'e”?\/p (37)
o 4 0 0 \/‘7 2

and similarly for S. Again, the constants B and B' must be zero for @(p) to behave as desired
for p — 0%. It is then easy to see that the condition

+oo
Q(r)e "dr =0 (38)
0

is necessary for @ to vanish at infinity; a similar result holds for S.

Writing down explicitly conditions (36), (38) for the "second members” P, R, Q,S and
using egs. (261,2), one gets, after some algebra, the values of the unknown constants w,i, ~L,
e

, .82 w 1 161 —v

. 2 :
T+ =5 ) e == i =4i(1—-(n2)

1—v,

1+/n?2
41‘_+—n_

2
% 2—v

¥ . (39)

2 —v’

The "second members” P, Q, R, S are then fully known; from there follow the functions f’, Q
R, S, then the functions W} + W1, Wi-WL, Wi, Wi, and finally the functions W3 + W1,
W1 —WL W}, W}. The calculations required are long and the Fourier inversion is somewhat
tricky. The final results read as follows:

2 1 1+ u?
1 1 e .
(Wi + Wi(u) = = {Re x(u) + 152 {n 7
2v i

+2—v(1+u2)2

(40)

2 14u?
[Z(U' —)+(1-u*) Zu + 4u tan_]u} } g

4
(2 —v)

(W) — W) = - [0-oRex) + 55 e

14 u? 4
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Whi(u) = E —v) Im x(u) — 2 tan"ul ; (42)
5 x2—v) [ X 1+u? : ‘
1 1 2 =1
Wl(u) = = ¢—Im x(u) + 7 tan” u
T 14+u (43)
4v 1 1+ u? 2 =
+2jm [—2u+u€n + (u* —1)tan™ uj ¢,
where §
P b 1+t t
=7 n|— ) —————- 44
x(v) = Gy /_w “( 2 )(1+it)1/2(1—it) 4]

(This expression cannot be put in a more explicit form since it is easily shown to be reducible
to indefinite integrals of the form [ fﬂ’; dz, which are known not to be expressible in terms
of elementary functions). Again, the real or imaginary character of the various constants and

functions could be predicted a priori.

Since the functions H , etc. are homogeneous of various degrees, they can be expressed in
terms of their restrictions W , etc. to the line z = —1; from there and egs. (6), (8) follow the
final expressions of the crack-face weight functions (to first order in €) :

(hry +ihir)(z,2) = W [(1 - ie enlz|)(W] + W) + (Wi —wlh)

(his +ihir )z, 2) = “3'\/0:7:@ [(1 = ie tala (WS — W2) + (Wi + WD)
1

(hirry +thire)(z,2) = W (Wi + eWipg] (45)
: 1 . E
(hr: +thr:)(x,2) = W [(1 —de bn|z|)W? + eWZI]

A N 1
(. 2) = W

0

where all functions W2 etc., the expressions of which have been given above (egs. (27) and (40)
to (44)), are to be taken at the point u = z/|z|.
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