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ABSTRACT

In conventional linear elastic fracture mechanics (LEFM), Irwin's (1957) modes I and 1I stress
intensity factors, that is K; and Ky, are adopted. Thus, according to the traditional textbook
approach, the stress intensity factors are referred to the 6, plane when determining the near field
«tresses as well as when conducting crack closure analysis. While this approach is adequate from
the point of view of determining the stresses in general, it is restrictive in that only self-similar
crack propagation may strictly be considered thereby (Lo et al., 1996a). Hence, as a consequence
of the apparent oversight of the constraint on Irwin's derivation of the stress intensity factor, an
anomaly has arisen in the subsequent traditional approach to shear "fracture". This may be broadly
attributed to a rigid adherence to Irwin's notion of a unique stress intensity factor for a given
boundary value problem, when taken in conjunction with the association of the mode of fracture
(which is actually an opening fracture in the 8=-70-5° plane) with the applied shear loading (as
referred to the 8, plane), as an unqualified extension of Irwin's shear failure criterion for the 6,c
plane. Indeed, the latter tendency to associate mode of fracture with mode of loading
unconditionally has been unjustifiably carried over to the case of mixed mode fracture. Moreover,
in considering both modes of loading, the situation has been aggravated by the effective adoption
of K, as the sole basis for determining fracture. A more recent development has been the
application of crack kink analysis to address non self-similar crack propagation. The apparent
reason for doing so has - in contrast with traditional non-"kink" analysis - been to retain the notion
of an Irwin type of stress intensity factor attaining its critical value as the basis for determining
fracture, albeit referred to the generalised 6 plane. However, the determination of stress intensity
factor by this method of analysis is unduly elaborate, and furthermore the tendency so far has been
to focus on the pure mode 1 fracture toughness only (Lo et al., 1996b), similarly as in the case of
the traditional approach. On the other hand, the following discussion will show that by adopting
the unified, equivalent stress intensity factor K, which for a given boundary value problem would
vary from one 6 plane to another but remain constant for a particular 6 plane, a unified model
would evolve, which would be able to predict pure as well as mixed mode fracture propagation
consistently.
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INTRODUCTION

It has been shown by Lo et al. (1996a) that Irwin's concept of the modes I and II stress intensity
factors may be generalised in terms of the expressions

lim
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respectively, where o, is the circumferential stress and 7,4 the shear stress, in polar coordinates,
and r is the radial distance from the crack tip. However, it appears that Irwin's interpretation of
the stress intensity factor is strictly pertinent to the 6, plane only, and the extension of its relevance
to some other 6 plane - which is untenable - has led to various inconsistencies in the subsequent
development of fracture mechanics The oversight of the sole emphasis placed by Irwin's
derivation on the 8, plane seems to have been perpetrated, in turn, by his implicit assumption that
the stress intensity factors K, and K are absolute constants of a given boundary value problem,
when taken in conjunction with his postulate - based on corresponding closure analyses of the 6,
plane - that a crack would extend whenever K; or K; reached its critical value of K. or Ky,
respectively. However, as borne outby the following discussion, not only are the factors strictly
pertinent to the 6, plane only, and would therefore be more explicitly denoted as K;, and Ky, -
where the subscript "0" would refer to the same plane, but also the stress intensity factors K, and
Kye, Which arise from the formulation of the proposed unified model (vide equations (5) and (6)),
would vary with angle 8 - where - <f<m, and in so doing, constitute appropriate parameters for
predicting fracture along the generalised 8 plane.

In addition, it appears that the more recent development of crack kink analysis (Cotterell and Rice,
1980; Hayashi and Nemat-Nasser, 1981) may have been a reaction to the above lack of consensus
in traditional fracture mechanics. Accordingly, whereas the notion of an Irwin type of stress
intensity factor, which is referred to the current crack extension plane, is maintained as the basis
for determining crack propagation, itis, in contrast with the traditional approach, applied to both
self-similar and non self-similar crack extensions. In doing so, however, the closure analysis of
a non self-similar crack extension becomes unnecessarily elaborate, in that it is necessary to
provide an a priori kinked crack, thereby distinguishing it from that of a self-similar crack
extension - which is effectively allowed to take place directly from the existing crack tip. On the
other hand, non self-similar crack propagation may be addressed at source, that is on the basis of
the state of the near field of an existing crack tip, which would thereby be extant, instead of having
to analyse the rather more complex boundary value problem of a crack in its kinked state - for
which there is no particular conceptual justification, only to have it drawn back to the existing
crack tip subsequently in order to simulate the actual propagation (Lo et al., 1996b). Moreover,
there has been an undue tendency to focus on the mode I fracture toughness alone - as also in the
case of the traditional approach to frecture mechanics.

In view of the above anomalies of conventional fracture mechanics, a unified model will be
presented herein, which will essentially be a generalisation of Irwin's work on pure mode fracture
along the 6, plane, so as to cater for ¢ither pure or mixed mode fracture along the generalised 6
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plane, where -n<B.<m. By means of the model, the foregoing anomalies may be rationalised and
hience redressed - a detailed account of which is provided in a recent publication (Lo et al., 19.96:1.).
I'he model has also been verified against known experimental results, a summary of which is
depicted by Figs. 2 and 3 of the following discussion.

HE UNIFIED PURE MODE STRESS INTENSITY FACTORS K|, AND Kgpe

As indicated above, there is no justification in distinguishing between the analysis of a self—sir.n_ilar
and non self-similar crack extension. Furthermore, in determining the relationship between critical
rate of energy release and fracture toughness, via Irwin's crack closure analysis gf the 6, plane, the
particular definitions of stress intensity factor of equations (1) a'nd (2) are 1mpheq. On the abqve
premise, a crack closure analysis of the generalised 6 plane will be carried out in the following
discussion, and the unified, equivalent stress intensity factor, K,, which is based on the proposed
unified, pure mode stress intensity factors. K,, and Ky, deduced.
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Fig. | Closure parameters of crack tip.
I'o begin with, consider the closure of the crack extension in Fig: 1, which i.s orientated in the
generalised 6 direction and subjected to mixed modes I and II loading, for which

Gy - [1035 Oy (Bar, ) - (5, O, (Bar-m)dr 3)
°  %a .

where G, is the mixed mode rate of energy release in the 0 plane, "a" the existing crack length, 0
the direction of the plane of interest with respect to existing crack plane 8,=0, and u'ge a_md .u',, the
circumferential and radial displacements in polar coordinates, respectively. Next, substituting the
expressions given by Irwin (1958) for 0, Uy, T and u', in equation (3), we would have
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where v is Poisson's ratio and x a known function of v. Note that equation (4) is in the same
format as the traditional analysis of the B, plane, except that in view of equation (1), and by the
same token equation (2), Kj and Ky, would represent the modes 1 and II stress intensity factors
corresponding to the generalised 6 plane, given as
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respectively, rather than Irwin's K, and Ky which pertain to the 6, plane only, while
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also similarly as in the traditional analysis of the 6, plane, although now referred to the
generalised 6 plane.

In other words, Ky, and Ky are the counterparts, in the generalised 6 plane, to the traditional stress
intensity factors K; and Ky, of the 6, plane, and therefore a necessary condition would be that
when 6 = 0, K,, = K; and Ky, = Ky, which is indeed confirmed by corresponding equations (5) and
(6), respectively. Hence, as indicated carlier, K, and K; would be more appropriately referred to
as K, and Ky, respectively, where the additional subscript "0" would refer specifically to the 6,
plane.

On the above basis, since K/ = Kjq andK'y = Ky when 62 - 0, we would have

WA 2k 2
G, - 5 G Ky) ©

where "E" is Young's modulus. Furthermore, since, for pure mode 1 crack propagation in the
generalised 6 plane, Ky, = 0, and K - Ky as G, ~ Gy, we would obtain

1+ 1+ 2
Glc : L%_K)_ch > (10)

as in the case of Irwin's (1957) analysis of mode I crack propagation along the 6y plane.
Likewise, for pure mode II crack propagation along the generalised 6 plane, Kjg = 0, and Ky -
Kye as G = Gy, so that
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5 1 the case of Irwin's analysis of mode II crack propagation along the 6y plane. Hence, the
{undamental, physical requirement, that the relationships specified in equations (10) and (1 1)
.hould be applicable to any 6. plane in an isotropic, homogeneous medium, may be satisfied by
ihe adoption of the unified stress intensity factors K, and Ky, as defined by equations (5) and (6)
respectively.

i1 contrast, the traditional notion that K, = Ky = Kc or Ky = Ky = Kyc unconditionally, when
fracture takes place due to an applied, pure opening or shearing mode of loading in the far field
(as referred to the 8, plane), respectively, would be untenable in that, for such fractures to occur
i the generalised 6. plane, the relevant physical relationship given by either equation (12) or (10)
could not be satisified by mere substitution of the corresponding traditional fracture criterion,
ncicated above, in the right member expression of equation (4). Thus, it would appear that, for
4 piven boundary value problem, Irwin implicitly extended his proposition of K; and Ky as
Absolute constants for determining the near field stresses of an existing crack tip, to K; and Ky as
shsolute constants which may be employed in determining crack propagation when K, = Kc or Ky

K, when he found by closure analysis that K, and Ky could be considered as material
constants on an equal footing with Gc and Gy respectively, not realising that his derivation of
stress intensity factor was, from the outset, restricted to the 6, plane.

'11: MIXED MODE FRACTURE TOUGHNESS K. AND UNIFIED EQUIVALENT STRESS
INTENSITY FACTOR K,

in general, a mixed mode of fracture could occur under either a pure or mixed mode of applied
loading, in which case, referring to equation (9), we could write

1
G, - E(lw)(lm)Kcz , (12)

where G would therefore represent the mixed mode critical rate of energy release and K. the
inixed mode fracture toughness, as defined by the unified model. Thus, by the same token as for
the relationships of equations (10) and (11), K. may be construed as a valid alternative parameter
10 G,. for determining crack propagation. Consequently, the traditional fracture parameters K,
K. Gy and Gy, which have hitherto been strictly applicable to pure mode fracture in the B¢
plane only, would be generalised in terms of the unified parameters K¢ and G, for mixed mode
f1acture along an arbitrary 6 plane. Furthermore, in view of equations (9) and (12), we would
have

K + B = B (13)

at fracture, where the values of K, and Ky’ in the left member of equation (13), which is
indicative of the loading energy, may be obtained via equations (5) and (6) respectively. On the
other hand, the right member parameter reflects the fracture energy, which is a material property
(for simplicity of reference, the indicative energy terms on the left and right members of equation
{13) will hereinafter be abbreviated as "loading energy" and "fracture energy", respectively). In
determining the mixed mode fracture toughness, K., it is evident that the limiting condition of pure

mode 1 fracture along the generalised 8. plane - for which K;o=0 and therefore
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Kle - ch (14)

- and that of pure mode II fracture along the same plane - for which K;,=0 and hence

K - Ky (15)

_ would have to be satisfied initially. Thereafter, an appropriate variation of K¢ would have to be
prescribed between the two limiting conditions. One possible approach would be to convert the
component pure mode "loading energy" terms of equation (13) into equivalent mixed mode
"loading energy", in direct proportion to their respective "fracture energies", that is
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Hence, in view of equation (13), the mixed mode fracture criterion would be defined as
2 2

TN I

I(IC KﬂC
(vide Fig. 2). Furthermore, since K, and Ky, would be known quantities, it would only be
necessary to determine the fracture angle, 6, in order to establish the point of fracture on the
corresponding envelope. This may be achieved by maximising the loading energy, a detailed
account of which is provided elsewhere (Lo et al, 1996a). However, notwithstanding the
foregoing derivation, Lo et al. also proposed a more generalised form of the fracture envelope
which would, in principle, cater for practically any form of brittle material behaviour.
Nevertheless, it is noteworthy that the unified fracture envelope and corresponding fracture surface
of Figs. 2 and 3, respectively, satisfy a wide range of material behaviour, as exhibited by brittle
clay, plexiglass, aluminum alloy and steel.

K

I
§
5
o
g
<
&
o
B
2]
B
B
=
2
=

Analytical Prediction

13

Fracture Surface

LEGEND
e
4

(V)
(In
31&
4

<1 (17

e 7075-T6

1.0 o2 o  Kaolin clay

an

Kic Ky
00 L—— l l

0.0 0.2 0.4 0.6 0.8 1.0
K Ile /K 1c

0.2 ’(Kle)2 +(Kue)2 "

Fig. 2 Unified envelope for 7075-T6 aluminium and brittle kaolin clay.
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Figure 3. Unified fracture surface by linear conversion of loading energy.
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As a final point, equation (13) indicates that for generalised mixed mode fracture to occur along
an arbitrary plane, 6¢ , from the crack tip,
K, - K (18)

] € 2

K, - *{Kq - K (19)

Thus, K, has the connotation of a mired mode stress intensity factor from the point of view of its
attaining the fracture toughness, K, during mixed mode fracture. However, Kq does not comply
with the other characteristic requirement of a stress intensity factor, that is as a means by which
the magnitudes of near field stressesmay be determined by simple factoring of the terms inr and
8 of their respective standard expressions (to do this, it would be necessary to employ K, and Ky
instead). Nevertheless, since, as indicated above, K, does have the attributes of a stress intensity
factor from the standpoint of its corresponding fracture criterion, it would be appropriate to refer
to it as the unified, equivalent stress intensity factor.

where
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