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ABSTRACT

A direct Symmetric Galerkin Boundary Element Method for the analysis of fractures in thin
(Kirchhoff) infinite elastic plates in bending is presented as a particular case of a general
formulation. Numerical difficulties due to the presence of highly singular integrals are
overcome exploiting an analytical regularization procedure. Only weakly singular double
integrals need to be computed. Two topics are addressed: evaluation of the stress intensity
factors from the near-tip displacement and normal-slope fields and computation of the
energy release rate by means of a sensitivity analysis procedure. In order to obtain a
better accuracy special tip elements have been developed allowing to simulate the correct
asymptotic behaviour of the variables involved. The procedure outlined can be applied to
arbitrary crack shapes: numerical examples are provided for straight and circular fractures
in infinite plates subject to bending moments and vertical shears. Comparisons between
analytical and numerical results validate the ideas presented in this contribution.
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INTRODUCTION

One of the most appealing features of the Symmetric Boundary Element formulations in
9D and 3D elasticity and potential problems (Sirtori, 1979; Maier and Polizzotto, 1987;
Nishimura and Kobayashi, 1991; Sirtori et al., 1992; Maier et al., 1993; Bonnet, 1996)
is their capability to simulate fractures without requiring special interfaces (unlike usual
Collocation formulations), or particular 'discontinuous’ elements which are necessary in
the so called Dual Approach (Portela, 1993). The use of the traction equation, in fact,
ideally lends itself to the enforcement of boundary conditions along cracks. Moreover, the
presence of strongly singular and hypersingular integrals is no serious drawback since regu-
larization procedures have been devised (Nishimura and Kobayashi, 1991; Sirtori et al.,
1992; Bonnet, 1995; Frangi and Novati, 1996) which reduce the order of singularity so that
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only weakly singular integrals need to be evaluated numerically. Recently, in the context
of the Kirchhoff-plates theory, two new BE methods have been proposed: a regularized
collocation approach (Frangi, 1996) and a symmetric variational formulation based on an
augmented potential energy functioral (Frangi and Bonnet, 1996). A symmetric BE formu-
lation for fracture mechanics can be more directly obtained starting from a Betti statement,
in which the auxiliary state is generated by a suitable distribution of static sources (forces
and moments) and kinematic sources (vertical displacement and normal-slope discontinu-
ities). The latter approach is followed in this paper allowing the mathematical idealization
of fractures as lines which are loci of vertical displacement and normal-slope discontinuities.

SYMMETRIC GALERKIN BE FORMULATION

The behaviour of a thin plate of boundary T'g with a crack T inside, which is small in
comparison to the plate dimensions, can be usefully represented considering the crack I in
an unbounded domain.
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Fig. 1  Relevant notation and conventions

Only T is discretized under the hypothesis that the real elastic state satisfies suitable
(radiation) conditions at infinity. The governing variational equation can be obtained as
the particular case of a general formulation which is developed in a parallel paper (Frangi,
1997) and reads (considering a smooth crack with no corners and zero normal pressure):

[ 1QxAT = MyAgy +6My gy +3MrApr = 6QAw] ds =0 (1)

In eq.(1) Aw denotes the vertical displacement discontinuity wt — w™ along T' (see Fig.
1), Apy = Aw,n; and Apr = dw,T; the normal- and tangential-slope discontinuities,
My = Mmn;n; the normal moment acting on both sides of I', Mr = AM;;n;7; the twisting
moment and Qp the Kirchhoff equivalent shear defined as Qx = Q+ Q%I where Q = Qn;
is the pure shear and s is the arc length along I (the comma indicates partial differentiation
with respect to the field point and the Einstein summation convention is adopted for lower-
case indices). The moment and shear components are defined from the three-dimensional
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siress tensor as:
/2 ) h/2
Mi(x) = /—h/-z oij(x,2)zdz = — K ket ke Qi(x) = /_h/2 oi(z,z)dz = Mjj; = —Duw jj
- : s Eh?
Kijke = D[(1 — v)dubje + v8;;0ke) {i,5} € (1,2) D= m

['he auxiliary state, denoted by 4(-), is generated by a distribution of normal-slope discon-
tinuities Apy and displacement discontinuities Aw on T'.

Since 0Q can be expressed as 6Q = %‘s—R (Frangi and Bonnet, 1996), letting §P;j = 6M;; —
¢,;0R, eq.(1) may be rewritten as:

AlQ](AﬁV = A{NA(,BN + 5P,‘j’ll]'AlU'i] ds =0 (2)

where the identity: Min;Aw; = SMnyApy + MrApr has been used. In (Frangi and
Bonnet, 1996) it is shown that:

SP;j(x)n; = A —(%%Z,—k(w, T)Aw () dsz (3)
with:
Zi(x, &) = —D? [(1 — v*)W,aa(@, )0 + (1 = V)W i (x, 2)] (4)

where i% denotes differentiation with respect to the arc length defining the & position and
the comma followed by a tilded lower case letter denotes differentiation with respect to the
corresponding & coordinate. Moreover W (x, &) is the displacement induced at ® by a unit
vertical force acting at  and is given by:

1 2 e
W(z,x) = 16”D(T2Logr‘ —r?) r=|¢ — x| (5)

Through integrations by parts, if Aw; and Aw,; are CoonT:
a e O g e -
/Aw.,»(:c)éP,-]-(z)nj(m) ds, = /[ /r ggAuv,i(z)Z“,.(m,z)—a—gva,;(m) ds; ds, = B(Aw, Aw)
r ;

It is worth mentioning that, once the regularization has been performed, the cartesian
gradients might be replaced, if necessary, by the 'physical” fields Apr and Ay since, for
instance: %Aur =DI'Apr + DY¥A¢p having defined the operators:

; o e g, 1
DY f(w) % [aif - %r,.f] () DIf(z)™ [0~f * ;"af] (@)

where p is the curvature radius of T.

Note that, according to the Kirchhoff approximation, Apr is the tangential derivative of
Aw. It is thus possible to deal indifferently either with Aw, interpolated via C"! cubic
liermitian shape functions, or with Ay, interpolated via CY quadratic lagrangian shape
functions. If the latter choice is made 'compatibility’ must be checked, i.e. [ Agpr ds should
represents an admissible displacement field (e.g. if a crack is considered. the resulting
displacement discontinuity must vanish at the crack tips).
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ENERGY RELEASE RATE EVALUATION

The total potential energy functionalfor a crack in an infinite plate under uniform bending
moments My and shear Qg (see Fig.1) is:

T= lB(Aw,Aw) - Mo/ Aw;(xz)n; ds; + QO/ Aw(z) ds; (6)
2 r r

The energy release rate due to a crak-tip extension is computed as the material derivative
of eq.(6) with respect to the coordinates of the crack-tip involved. A ”transformation
velocity” 9 is introduced, defining the deformation process (extension) of the crack tip.

*
Let (-) represent the material (lagrangian) derivative operator with respect to a generic
shape parameter p (Dems and Mréz, 1983; Bonnet, 1996). Applying this operator to the

differential line element ds (with 7 tangent versor): ds= (r-VI-T)ds = ‘%(19,-71-) ds. Since

AW represents an admissible displacement field, from the variational equation eq.(2):
B(A, Aw) — MO/ A i(z)n: dsg + QO/FA&J(:E) disp=10 7
r
It can be shown that the material derivatives T is then given by:

* 1 0 * i O
T= D(Aw;0;, Aw) + 5/F/ré—sAw';(:c)Z,k(:n,a:)—Aw‘,-c(a:)dsi ds,

s
M, /r Aw,i(z) (n; ds;)+Qo /F Aw(z) ds, 8)
with:
D(Aw ;0;, Aw) = —B(Aw ;9;, Aw) + Mo/rAw‘j(:c)ﬂj‘,-(m)n.‘ ds, 9)

Note that, if Qo = 0, D(Aw;0;, Auv) = 0, according to eq.(2). In this specific case 9 is
chosen such that 9 = U7 moreover it has non-zero values only on the tip-element where
it displays a linear variation from 1 (crack tip) to 0. Under these hypotheses ’j‘ represents
the energy release rate G. Denoting by ki and Ky the stress intensity factors, G can be
computed from the near-tip fields as (Hui and Zehnder, 1993):

him

G= (kf+k§)m "

SPECIAL TIP ELEMENTS

The near-tip displacement field w, in polar coordinates, reads (Hui and Zehender, 1993):

(2r)3h? { 174v 3 1,] [15+3u_ 3 . 1]} "
- I3 os(57) — cos(50) | +hz |3 29) — sin(=¥
W= bE ) k1 31_V(‘OS(21}) (05(20) +ha |3 1_’/5111(20) 51n(21) +o(r?)
(11)

An accurate numerical evaluation of the stress intensity factors and of the energy release
rate requires the developement of special tip elements, in the same spirit of those used in
9D linear elastic fracture mechanics (Aliabadi, 1991). In fact, the near-tip displacement
and normal-slope discontinuity fields cannot be suitably represented if usual discretization
hypotheses are adopted, i.e. lagrangian quadratic and cubic hermitian shape functions
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modelling the normal-slope and the vertical displacement fields and "linear” elements mod-
elling the geometry. Here "linear” means that the current point position is given, over one
element, as a linear combination of the two end points coordinates by means of an intrinsic
parameter 7 (n € —1,1). For instance a circular arc element of span A3 (on which the
point coordinates are completely defined by the radius R and the angle /3) is said to be
“linear” if the point angle is determined through a linear combination of the two end-point
angle values. In 2D LEFM one of the most frequently used procedures consists in intro-
ducing a modified element geometry description (quarter point element): let n = 1 and
1 = —1 correspond to the crack tip P; and to the second element end-point P_, respec-
tively; denote by P> the point corresponding to 1 = % in the linear element defined by
P_, and P;. In the modified element the point coordinates (angle value for arc elements)
are described in terms of a quadratic lagrangian interpolation of the coordinates of three
points: the two end nodes and Py /o.

This technique can been succesfully applied to thin plates if the extrapolation is made in
terms of the normal-slope field. Let p denote the distance along the element of a point from
the crack tip (p = r for straight elements and p = R(3p, — /3) for circular arc elements):

L L
p=F0—n? J=§(1—n)=\/L7/) (12)

where J is the jacobian of the transformation p = p(n) and L is the distance between the
two end points in the case of straight elements and L = RAS for arc elements. From
¢q.(11) the near-tip normal-slope displacement discontinuity is:

I=n P
2v/2k, p'/?h? 12
=0 13
DTy o) (13)

1 Jw
Apn(r) = - 6—1;

I=-mr

The interpolation of Ay on the modified tip element, using eq.(12). becomes:

Apn = (4ApNay2 — A’»PN.—I)\/% +2(ApN -1 — 2A¢N,1/2)% (14)

where Apy 1 and Apn /2 are the normal-slope discontinuity values at P_, and Py
respectively. Thus the required p!/2 variation near the crack tip is obtained.

On the contrary. if the Aw field is modelled and the extrapolation is based on the displace-
ment or tangential-slope fields. the modified tip element does not provide the required
hehaviour, as explained by the following remarks. From eq.(11) the near-tip displacement
and tangential-slope discontinuities read:

4/ 2ko 1212
9D(3+v)(1 —v)

Shes 112112
3/2) Pt = 23/ 2kop' /%R

1/2 =
T 3DB+v)(1—v) BiE (18)

Aw = + o(p
Neither a linear element, nor the "quarter point element” previously described can be
applied in modelling the crack tip. In fact these choices would lead to Aw = O(p*) and
Auw = O(p) respectively. In this paper the following ”composite” technique has been
adopted: the geometry is still described by means of the singular "quarter” point element
{whicli is needed in order to guarantee the correct representation for the normal-slope field)
and modified quartic polinomial functions are used in modelling the displacement field:

2 2p..
Aw = C5(1 = ) + Coll = )* = Co(L)2 + Ca(T)? (16)
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The term Cy(1 — )" is required in order to comply with the continuity requisites imposed
on both the displacement and tangential-slope discontinuity fields. Using eq.(16) it is in
fact possible to determine two shape functions such that, inn=-1 Aw =1, %’ﬂ =0 and

Aw = 0; ‘%"E = 1 respectively.
Straight crack subject to constant normal bending moments Mo
Let us consider a straight crack of kngth 2a in an infinite plate subject to constant normal

bending moments My (see Fig. 1). Following Hui and Zehnder (1993):

6 M ~

Numerical investigations have been carried out with different mesh-refinements using both
linear and modified crack-tip elements.

ky

r I }”{WUTITET* rel. err. “ k??‘Q—O’;m rel. err. " ké{i"l‘a;% l rel. err.J
Exact 6. 3. 3.

Mg 5.9455 9.06E-03 2.7464 | 8.45E-02 2.7389 8.70E-02
Moy 5.9757 4.05E-03 2.8303 | 5.65E-02 2.8786 4.04E-02
Sio 5.9844 2.25E-03 2.9027 3.24E-02 2.8541 4.86E-02
Sao 5.9992 1.29E-04 2.9998 | 6.50E-05 3.0016 5.46E-04

Table 1: Straight crack: adimensional stress intensity factors

The results are presented for four cases: mesh Mjp with 10 linear elements; mesh My with
20 linear elements; meshes Sy and Sy with the same modelling as for Mo and Mo but
with modified crack-tip elements. In the first two columns of Table 1 the stress intensity
factors are compared with the exact solution.

[ [G™D/(MZe) [ rel err. | GDJ(Q%®) | rel. err. |
Exact .1360E+01 .3400E+00

My .1303E+01 | -.419E-01 .3246E+00 | -.451E-01
My .1305E+401 | -.401E-01 .3266E+00 | -.393E-01
Sio .1360E+01 453E-03 .3377E4+00 | -.648E-02
Sag .1360E+-01 .508E-03 .3403E+00 .113E-02

Table 2: Straight aack: adimensional energy release rates

The numerical values of the stress intensity factors are obtained through evaluation of
eq.(13) in the middle node of the the crack-tip element without any data-fitting procedure.
In Table 2, on the contrary, are cdlected the numerical results of the cnergy release rates
computed using the same meshes previously described.

Straight crack subject to constant shear Qg

The same plate as in the previous example is now subject to constant shear Q.
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I'he stress intensity factors are (Hui and Zehnder, 1993):

k=0 ky = 3Qu 372 (18)
h?

Numerical investigations have been carried out with different mesh-refinements using both
lincar and special crack-tip elements and the same discretizations as in the normal moment
~xample. The numerical values of the stress intensity factors (Table 1) are obtained through
~valuation of eq.(15) in the first node of the the crack-tip element. Two approximations of
I, are provided using either the displacement discontinuity (k2. column) or the tangential-
slope field (k2 4, column). The results concerning the energy release rate computations are
collected in Table 2.

| kihZ](MoR'?) | rel. err. kgh'z/(x\loRlﬂ) rel. err. J

Exact 20° .3477E+01 .6132E+00

Mo, 20° .3299E+01 .512E-01 .5941E+00 .312E-01

M>g, 20° .3353E401 .357E-01 .5937E+00 .317E-01

Sio,20° .3461E4-01 A471E-02 6224E+00 | -.150E-01

Sap, 20° 3290E+01 | -.352E-02 | .6178E+00 | -.746E-02

Exact 70° .5121E401 .3586E+01

Mg, 70° .4831E4-01 .566E-01 .3475E+01 .310E-01

Mo, 70° .4933E+01 .368E-01 .3472E4+01 .317E-01

S1o,70° .5070E+-01 .100E-01 .3640E+01 -.152E-01
@, 70° 5134E+01 | -.246E-02 .3613E+01 -.748E-02

Table 3: Arc crack: adimensional stress intensity factors

Are crack subject to constant normnal bending moments Mo

Lot 20 denote the span of an arc of radius R = 1 subject to constant bending moments
M, (see Fig. 1).

[ [GD/(MGR) | rel. err. 1 [GD/(MZR) | rel. err. |
Exact 20° | .4711E400 Exact 70° | .1476E+01
Mg, 20° 5014E+00 | .643E-01 || My, 70° 1416E+01 | -.409E-01
My, 20° 1522E400 | -.401E-01 || M. 70° 1417E401 | -.400E-01
S1p. 20° A712E+00 | .22TE-03 || Si0,70° 1477E4+01 | .224E-03
Sag, 20° 1714E+00 | .566E-03 || Sx, 70° 1477E+01 | .564E-03

Table 4: Arc crack: adimensional energy release rates

The stress intensity factors are (Sih, 1973):

) oy — D 6Mo(L = 1) roy e [ D
""I - _S_M_O(_hl?_ﬂe’m“CO sin 190 C()S}Q—lJ ]\‘2 = ——l(hg———)(" g C() Sin l)() s 30‘
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where:
2(3+v)

Oy= “costp(l —v) +5+3v

Two different values for vy are considered: 20° and 70°. In each case four meshes are
tested: Mg, Uo and Mg, Vg with ten and twenty linear elements respectively; Sio, Yo and
Ss0, U always with ten and twenty linear elements but with special elements. The results
are presented in Table 3 and Table 4.
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