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ABSTRACT

I'his paper summarizes some results on stress intensity factor (SIF) histories for a 3D crack
moving steadily and unsteadily.In the first part,elastodynamic SIF for a unbounded solid
containing a planar crack that propagates at a constant velocity under 3D time-independent
loading is considered .The solutions of a general loading are expressed out in term of
superposition integral based on the fundamental solution procedure.In the last part,using the
form of Willis et al (1995) of dynamic mode I weight function for a moving crack,the
propagation of a planar crack with a perturbation from straightness of the edge and the
associated perturbation of the SIF is investigated. The result shows that the oscillatory crack tip
motion through brittle,locally heterogeneous materials could be the basis for careful recent
mcasurements by Gross et al(1993).
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INTRODUCTION

Some data from dynamic fracture measurements show that a number of three-dimensional
cffects are of importance to warrant further investigation.Achenbach and Gautesen(1 977)
solved the elastodynamic steady-state problem for a semi-infinite crack under 3D
loading.Freund(1987) dealt with the case of incident mode I stress wave loading and some
extensions have also been considered by Ramirez(1987) and Champion(1988).Most recently,Li
and Liu(1994a-d,1995) published a series of papers for 3D elastodynamic crack problems and
btained the exact solution for the problem with a pair of opposed collinear concentrated loads
acting on the crack faces at a fixed distance from the crack edge.

I xperimental measurements by Fineberg et al(1992) indicate that the limiting fracture speed is
significantly less than the Rayleigh velocity and the approach to this limiting speed is
accompanied by the onset of a dynamic instability.Some insight regarding these issues can be
obtained from the study of 3D crack advance through brittle,locally heterogeneous
materials.Rice et al(1994) analysed the propagation of a planar crack with a nominally straight
front in a model elastic solid with a single displacement component. They obtained then the
solutions for some elementary cases where a crack front moves unsteadily through regions of
locally variable fracture resistance.

I'his paper is divided into two parts.In the first part,the dynamic SIF histories for a half-plane
crack extending uniformly in an otherwise unbounded elastic body under combined mode
loading are considered.This problem is the three-dimensional analogue of the plane strain
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problems solved by Fossum and Freund(1974).The SIF histories of a general loading are
obtained in term of superposition infegral based on the fundamental solution procedure.In the
last part,by virtue of the form of Willis et al(1995),0f dynamic mode I weight functions for a
moving crack and its use in a first -order perturbation analysis of the deviation from
straightness of the crack edge,we hape to learn how the crack front begins to surround and
penetrate into various arrays of round obstacles.The results illustrate that the oscillatory crack
tip motion through brittle,locally heterogeneous materials results from constructive-destructive
interfences of stress intensity waves that can lead to continuing fluctuations of the crack front
and propagation velocity.

SIF histories of a steadily movingcrack

In this part,the fundamental solution,which is the response of point loading,is obtained

firstly. Then SIF histories of a general loading system are obtained out in terms of superposition
integrals.

Fundamental solution

Consider the elastic body containing a half plane crack depicted in Fig.1. The body is initially
stress free and at rest. At time t=0, two pairs of point forces appear on the crack tip tending to
slide open and to tear open the crack separately. Then while the crack tip moves in the x-
direction, the forces remain acting at the origin.

Two coordinate systems are employed in this paper as shown in Fig.1.The relation between
these two coordinate systems is:

E=x-vt, y=y, z=12z

Because this problem is antisymmetric about
the plane y=0, attention can be restricted to
the upper half space y>0. The boundary
conditions in terms of displacements and
stresses in the 0-£yz coordinate system are:

Fig.1. The geometry of the elastic body

ay)‘(§,0,z,t) =0

0,(£0,z,0) = P H(1)S8(&+vt)d(z) £<0
0, (£0,2,0) = PH(DS(E +v)5(2) £<0 1)
u (£0,2,1)=0 £50
u. (£,0,2,0)=0 £>0

for ze (—o0,0) and te (0,%0).
This problem can be expressed in terms of the scalar dilatational wave potential ¢ and the
vector shear wave potential 7 = (v, .y, .. ). Transform techniques are used here to solve this

problem. Similar to the solution procedure applied by Li et al(1994),the above boundary value
problem can be transformed into the Wiener-Hopf equations

E +E = —#xw)v(mxm)v’ @

where
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where p is the positive Lame’ elastic constants,and a,b,c are the slownesses of dilatational ,
shear,and Rayleigh waves,respectively.

The Wiener-Hopf technique was employed to get the Wiener-Hopf factorization. After some
analysis similar to those employed by Li et al,one can obtain the fundamental solutions.
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e(w,iy) =W (d> -y 1) +d?Y (10)
and b, =db/Jd? -b*  c,=cd/Nd* - d=1Iv
d'=dlb, b'=blb, c=c /b a1y
It is shown that those solutions will reduce to SIF histories for the two dimensional line load
problem solved by Fossum and Freurd [1975] when integrated over the range -00<z<co.
Figs 2-3 shows that the normalized SIF versus normalized time 7 =1/b, |7| for various value of
c/d,with Poisson’s ratio v=0.3(b=1.§7a,c=2.02a).From the graphs one can find that, for any
value z>0, the stress intensity factors are zero up until the arrival of the first shear wave and
there is a logarithmic singularity upon the first Rayleigh wave’s arrival and the curves turn
down sharply at the same time, then they go upward gradually. The factors will go to zero as
the time goes to infinity, but this property varies largely with the ratio c/d. The velocity at
which the crack travels and the property of the material have an important influence on the SIF
histories in this problem.
As is known, the full dynamic stressintensity factors can be expressed as

KP,(z,0) = [;E'Kn(z—z',t—x‘/v)l’,(x',z')dx‘dz'+ [ [ Kuz-z.t-x WP (¥, ) (12)

kP20 = [ [ Kn(z =20 - X' WP, 2)dx'ds [ [ Kulz-z.1-x#)P(x,2)dr'de’

Here KP,(z,t) and KP,(z,t) are the stress intensity factor histories for this general loading
distribution. And K, (z,f) (i =22,23,32,33) provide weights for the general impact loads
defined above.

SIF Histories of an unsteadily moving crack

Rice et al(1994) analysed a planar crack advancing through brittle,locally heterogeneous
material in a model elastic solid with a single displacement component.Using the form of
Willis et al (1995) ,of dynamic mode 1 weight functions for a moving crack,we study that
problem solved by Rice et al in the 3D context of elastodynamic theory.The asperities are
modeled as having the same elastic properties as the rest of the elastic medium,but with slightly
higher fracture toughness.And the half-plane crack results model finite-sized cracks,assuming
the lengths of the cracks are large compared to other parameters such as obstacles spacing
along the crack.
Problem Statement
Consider a half-plane crack propagating in an unbounded solid,nominally in the x direction
along the plane y=0. The crack front at time t lies along the arc x=a(z,t) while we assume to
have the form x =Vt + £ ¢(t,z) ,vhere the function ¢ (f,z) is assumed to be bounded,and &
is a small parameter. The crack front speed thus varies along the z axis and its shape deviates
from straightness.
In the paper,we derive the 3D solution as a linearized perturbation about the 2D results for a
crack moving at a steady speed ¥ under mode I situation.Hence for 2D situation

K=K, =k(V)K G=G,=gl,)G (13)
where

V.
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L. being the static factors.

i he energy vector factor g(V) has complex functional form but it can be taken to be in very
imple form as eq.(15) for most practical purposes[6].

I ollowing Willis JR et al and Fourier representation of the formula,SIF field associated with

the perturbed crack is then

,t.u,:):k(V)K‘(1+Iu(z,t)—If(z,t)—I/(z,t)) (15)
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0 0
and the details of F,(x) may be found in [14].
{1sing the relation between the energy release rate and the dynamic stress intensity factor,we
obtain that
G=G gW)+1,(z1)-1.(z,0)-1,(z0) 19)
1-v?
2F
i'ollowing Rice et al,our simulations begin with a straight crack propagating with a uniform
velocity , in the region x <0. The calculation of space and time varying dynamic crack
propagation in the heterogeneous region x > 0 (correct to first order) is done using the
following procedure:
(1) Having crack front positions,velocities and accelerations at a general(discrete) time step
mAl

B 7m1:
az,n)= A (e

n=-N

N 2mr:
()= DA, (e * 20)

n==N

where G = (K")? is the rest energy release rate supplied to a straight crack front.

N z
(zny= A, e

n=-N
lise the FFT procedure to calculate from current velocities  (z,mAt) accelerations , (z,mAt)

the Fourier coefficients A, (mAt), 4, (mAr);we first FFT the set {V (z; ,z)} to get

. m=1 “Digin
A,(0)= 2V, 0e N (m=2N) 1))
J=0

I'he coefficient set {fi,,(x)} is related to
4, =A,/m for n=0,to m/2
4, =A4,, 12m for n=m/2,-m/2
2 2

m,
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A,=A /m forn=-m/2+1 to -1

n+m/2
Verify that first order perturbation conditionsl;—;' <<1, ;At
(2) Calculate local crack front velocities for the next time increment as follows:

(2.1)using the formala (30) and kistory of 4, , 4, to calculate the coefficient I/, 1;,1 7 (mAt);
Next we rearrange from {i,, (t)} 10{1 : (t)} , following the same rules as for rearranging from
{4,(0} 10{4,(n)} above. »

(2.2)use FFT to invert 1% (mAt),(a = a,c, F)to I(z,mAt)

(2.3)use current crack front positions to calculate velocities (z,(m+ 1)At)during the next time
step

<< are satisfied.

& _(c(l— Az, 1), if At < 1) i~

o if Azt)=1
where
G (a,2)
G(+1,-1,-1,7
(3)use difference formula to calculate accelerations , (z,(m+1)Ar) during the next time step.

Alz,t) = (23)

(z,(m+1)Ar) = (V(z,(m+ 1) A1)~V (z,mAt)) | At 24)
(4)Calculate the local crack frontpositions at the end of the next time step as
a(z,(m+1)At) = a(z,mAt) +V (z,(m+1)Ar) At (25)

(5)Write output,check exit criteria (location of crack front or violation of first order
conditions);increase time index m by 1,go to step (1).

Fig 4 shows crack front profiles in the regions with a periodic array of circular asperities with
radius R and center to center spacing L at successives times. Same as Rice et al (1994),we

R
choose 7= 0.1,and the speed of Rayleigh waves ¢=0.53851a=0.93273b. All calculations have

been non-dimensionalized and G,,, (left)/ G, = 4.0 and G, (right)/ G, =2.0,where G, (left) and
G, (right) denote,respectively,the critical energy release rates of the left and right asperities in
a fundamental wavelength A=2L. G, denote non-asperity regions.The computations are done
using m=2N=256 and At=\/5Nc. At the initial instant,a straight crack was propagating with a
uniform velocity , in the region x<0.The asperities block the crack advancement after it
penetrates into the inter-asperity G, regions.As a result,the distribution of velocity initial
uniform,turns wavy and shows instability feature in a successive instants.Then the weaker right
asperity broke ,the left asperity also broke after some further crack front motion.

By virtue of the Mode I dynamic weight function and its numerical simulations in a first order
perturbation analysis of the deviation from straightness of the crack edge,we observe
that,oscillatory effects in crack motion,as denoted by Rice et al,are found to follow encounter
of the crack front with regions of variable toughness and these may be also be interpreted in
terms of constructive-destructive interference of stress intensity waves initialed by encounters
of the crack front with asperities and then propagating along the front. These waves,including
system of the dilatational ,shear and Rayleigh waves,interact on each other and with moving
edge of crack,lead to oscillatory feature of crack front profiles. It seems that the type of
oscillatory crack motion could be the basis for careful recent measurements by Gross et
al(1993).
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