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ABSTRACT

Recent results are outlined concerning simulations of quasi-brittle fracture processes by
the classical cohesive-crack model and by a nontraditional symmetric boundary integral
equation approach and its Galerkin boundary element discretization involving double hy-
persingular integrations.
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INTRODUCTORY REMARKS

The engineering analysis of solids and structures which exhibit constitutive instabilities
such as softening behaviour up to fracture, has recourse since many vears to idealization
based on kinematic discontinuities endowed with interface softening law, linear elasticity
being assumed everywhere else. In the Sixtics, such concept gave rise to the cohesive
crack model for quasi-brittle solids (Barenblatt, 1962; Dugdale, 1967) and to the softening
plastic hinge model for frame structures with unstable flexural behaviour (Maier, 1963).
The former model has acquired wide popularity in fracture mechanics of concrete and
concrete-like materials (see c.g. Bazant and Cedolin, 1991) and represents the constitutive
basis of the present contribution.

The computational framework of what follows is provided by a recently developed ap-
proach resting on boundary integral equations (BIE) and their space-discretized version
endowed with peculiar features, namely by the symmetric Galerkin boundary clement
method (SGBEM).

Quasi-brittle fracture processes interpreted by means of the cohesive crack model have
been successfully analyzed by finite element methods (FEM). sce e.g. Carpinteri (1989)
and Bocea et al. (1991).

However. since that model confines all non-lincarities to a discontinuity locus T, of a
dimensionality lesser than that of the problem domain. a BIE approach appears to be
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especially suitable for both theoretical investigations and numerical solutions of such kind
of mechanical problems. In fact, the dominance of the “lincar background” in the cohesive-
crack idealization of fracture naturally suggests an approach resting on two conceptual
and operative stages: (a) establish a (linear) relationship between static and kinematic
variables on Ty alone, by capturing in it the geometric and constitutive properties of
that background and exploiting superposition of effects: (b) link these variables by an
experimentally corroborated constitutive law for the locus Ty of possible displacement
discontinuities.

Formally, in compact symbols, the two sides (a) and (b) of the above approach can be
expressed, respectively, as follows:

Ap(z) = /r Z(z.€)dw(€)dl + ApF(z). = €Ty (1)

Ap = Ap(Aw), z €Ty (2)

Here: w and p represent the displacement jump and traction vectors, respectively, across
the discontinuity locus I'y: pF the tractons which would act there in a fictitious purely
linear eclastic response to the external actions; @ and € are Cartesian coordinate vectors.
Matrix Z(z, £) gathers (Green's) influence functions of the solid or structure conceived as
purely elastic and materializes the superposition of effects Ap across Ty due to Aw there
in the linear background of the actual problem.

Symbol A denotes increments and is wsed here for three substantially diverse mehanical
interpretations, with consequent different definitions of Ty (A) infinitesimal increments
(alternatively, rates: c.g. Aw — Sw = wdt. t being an event-ordering “time” variable):
(B) finite increments, over a generally small (but finite) time-step At: (C) “total” variables,
in a single step from an original reference state to the present one under given external
actions.

The rate formulation (A) fully allows for the nonholonomic (history-dependent, irre-
versible) nature of fracturing processes. It is appropriate for bifurcation and (overall)
stability analyses. To these purposes, the integration path Ty may reduce to the current
“process zone” (i.e. to the surface where displacement jumps are present but the faces still
interact, as distinct from the actual crack, along which they do not).

The step formulation (B) required by most procedures of time-marching solutions, pre-
sumes holonomy (history-independence) within cach step At. Hence, it represents an ap-
proximation of (A), which is legitimate if localized vielding over At is reasonably expected
to be “regularly progressive” (no local unloading) because the external actions grow pro-
portionally within the step (or reversibility turns out to be physically warranted). Clearly,
when the crack propagation path is a priori unknown, the step-problem is preceded by the
determination of the step advancement direction by some suitable criterion. Thus also in
this case. the locus Ty can be chosen for the step problem by suitably enlarging the current
process zZone.

The fully-holonomic single-step approach (C) can be adopted, with remarkable computa-
tional savings, if two conditions are fulfilled: (1) the whole tip itinerary can be reasonably
conjectured a priori (as it often happens. ¢.g., in the presence of symimetries or for debond-
ing processes in laminates): (ii) manifestations of irreversibility due to local unstressing
in the plasticity sense can be a priori rled out along the fracture process. Then. Iy de-
notes the whole locus of potential displacement discontinuities apt to include all cracks
and process zones at the process end.
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Focusing now on the integral operator in eq.(1), which transforms displacement jumps
acting along [y on the (unloaded, uncracked) elastic body, into the consequent tractions
there. the following essential features of it can be proven in general:

_é/rd /Fd w! (§)Z(z. ) w(xz)dl dT >0, Vuw: Z(:z:,g) =ZT(.x), =z#E (3)

The negative semidefiniteness, eq.(3), of the quadratic form (and its definiteness when the
domain € is simply connected with respect to ['y) stems from the self-evident energy mearn-
ing of the r.hs. of eq.(3), i.e. elastic strain energy associated to the dislocation field w(z).
The symmetry property eq.(3), can be regarded as a consequence of Betti’s reciprocity
theorem of linear elasticity, € = & being excluded in view of the singularity.

Kernel Z(z,£) is deeply rooted in the mathematical theory of elasticity. In fact, when Q2
specializes to the unbounded homogencous elastic space, Z(z, £) coincides with the two-
point influence function analytically computed and investigated by Gebbia in 1891. It is
also conceptually related to Maysel formula of classical thermoelasticity (see e.g. Nowacki,
1962).

In almost all situations of engineering interest, the Green functions contained in kernel
Z(z,&) cannot be obtained analytically, but must be approximated by some space dis-
cretization. To this purpose, FEMs exhibit the disadvantage that all nodal displacement
except those concerning nodes on T'q have to be condensed, i.c. usually a stiffnes submatrix
of large size is to invert (cf. e.g. Bocca et al., 1991). In BEMs such condensation con-
cerns only variables on the boundary I' and, hence, provides approaches naturally suited
to numerical simulations of quasi-brittle fracture. However, traditional BEMs (based on
Somigliana identity and its approximate enforcement by collocation at nodes) lead to an
approximation of kernel Z(z,£) which does not reflect its essential properties egs.(1) and
(2), i.e. which is neither symmetric nor sign-semidefinite (cf. e.g. Cruse, 1988; Cen and
Maier, 1992). On the contrary, these properties are preserved in the transition from the
contimum formulation eq.(1), to its BIE and BE counterparts, if the SGBEM of concern
herein is adopted. The consequences of this fact (besides the aforementioned computa-
tional advantages common to all BEMs with respect to FEM) appear to be especially
beneficial in the specific area of quasi-brittle fracture mechanics and in the neighbouring
and partially analogous area of unilateral contact and delamination analysis.

The main benefits of SGBEM with respect to traditional BEMs can be summarized as
follows: (a) bifurcation and overall stability criteria can be related to mechanical and
algebraic features of a syminetric (generally non-definite) matrix; (3) the once-for-all fac-
torization and inversion of the coefficient matrix for the boundary variables to condense
are considerably alleviated by its symmetry; (v) when interface constitutive laws, either
in rates or in holonomic piecewise linear terms, are associated to the discretized BIEs, the
problem is reduced to a complementarity problem or, alternatively, to generally nonconvex
mathematical programming; (6) solutions are characterized by variational (extremum or
saddle point) theorems.

The above positive features of the SGBEM as applied to problems governed by egs.(1)
and (2) have been pointed out and elucidated in carlier papers (Maier et al., 1991 and
1993; Cen et al. 1991; Bolzon et al., 1994 and 1995), where pertinent results can be
found in detail. Also important and to some extent still unanswered questions concerning
multiplicity of solutions (Bolzon et al., 1996) and the analytical description of softening
interface laws dictated by experiments can only be mentioned herein.

In what follows. focus will be on the generation of BIEs which exhibit a symmetric (self-
adjoint) integral operator, o the regularization and space-integrations of the hypersingular
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kernels involved, on the evaluation of stresses at crack tips and, finally, on incremental
problems resting on a broad class of interface models for T'q.

The regularization of singularities is crucial in all applications of SGBEMs (see e.g. Sirtori
et al.. 1992 Kane et al.. 1992; Frangi and Novati, 1996) and. hence, only some peculiar
aspects of the present context will be considered herein.

The SGBEM initiated in elasticity by Sirtori (1979) and Hartmann et al. (1985) and devel-
oped in plasticity by Maier and Polizzotto (1987). Polizzotto (1988) and others, nowadays
constitutes the subject of a fairly abundant, fast-growing literature surveyed in a paper in
preparation by Bonnet et al. (1997)

SYMMETRIC INTEGRAL EQUATIONS AND CONSISTENT INFLUENCE MATRIX
FOR THE DISCONTINUITY LOCUS 'y

The considered homogeneous solid or structure occupies (say in #3) the volume Q = QUT,
Q) being an open domain and T its boundary and "closure”. assumed as smooth (with
unique outward normal n everywhere). It contains the locus I'y of possible increments
of displacement discontinuities Aw at the end of a fracture process. To be specific, this
process is thought of below as holonomic according to the approach labelled (C) in the
preceding Section. so that total variables can be used, A can be dropped and I'y acquires
its most comprehensive meaning.

Let the homogeneous body in point be inbedded in the homogeneous elastic space Qe
and assume that surface forces F™ (static or “single layer” sources) and displacement jumps
D~ (kinematic or “double layer” sources) act on Q5 over T, the latter sources also over
T',. Consider the following cffects in N due to the above sources: (a) displacements, to
identify with data @ in the actual body, in points ™ of €2 at infinitesimal distances from
the constrained boundary ', (and forming a surface T';): (3) tractions, to identify with
data P in points ™ of Q at infinitesimal distances from the free (unconstrained) boundary
r,=r-T, (and constituting surface F;): (~) tractions across I'y.

Due to the lincarity of Q. the above cumulative effects can be expressed by superposition
through influence (Green’s) functions G of Q.

In order to recover in the body Q +T its actual state under loads, on I'y the sources D~
are identified with the (unknown) relative displacements there, and on T two circumstances
are made explicit in the traction and displacement jumps, i.c. in F~=p(&)—p(€") and
D™ = u(€") — u(&7). respectively:

(i) the exterior domain 0 = Q. — Qis undeformed, i.e. u(€¥) =0, p(€%) = 0 in any £*:
(ii)p(6)=ponTl, u)=monl, pl§)=ponl, u(€”) = u on I,. denoting by
barred and unbarred symbols data and unknowns, respectively.

Through the outlined provisions, the expressions of the effects (a), (3) and (7) yield the
following integral equations, respectively:

[ Guulw ©p€)T = [ Gl (@)l + [ Gule.Ow(€)dT = F.(@)

Vo e} (4)
~ [ Gule PO+ [ GyleHuE)dl - [ Gple.Ew(€)dl = F\@)
Veel, (3)

[ Gtz @p@r = [ Gpyla ()l + [ Guule. ©w(e) dT = Fu(z) + plE).
. Fs Ty
Veely (6)
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On the r.hs. of eqs.(4)-(6), f denotes given fields which gather effects due to external
actions (boundary data p and @ and possible domain data. i.e. body forces and imposed
strains).

As well expected, energy meanings and Betti's reciprocity can be shown to induce in the
kernels G of .. the properties expressed by egs.(3)as for kernel Z(x. &) of ©, namely:

G..(x, &) positive definite;  Gpp(x,§) negative (semi)definite; (7)

Gue(z.€) = Gl(&,x), € # €&, hk=up (8)

For the two and three dimensional homogeneous isotropic elastic space, the Green functions
in G, and G, coincide with Kelvin’s (1848) fundamental solutions of Navier equation for
unit forces in €, G, and G, with Gebbia’s (1891) fundamental solutions for displacement
jumps " concentrated” in €. Therefore they are all known in simple analytical forms and can
be integrated, provided their singularities for © = £ are adequately dealt with as discussed
in the next Section.

Now let a Galerkin weighted residual enforcement of the integral equations (4)-(6) be
adopted for their discrete approximate algebrization. This implies, first, to model the
unknown fields, which can be expressed as follows:

p(z) = N,,(:z:)P’ onT,: wu(z)=N,(z)U onT,; w(x)= N, (z)W only (9)

where matrices N contain interpolation functions (which are conceived as defined over the
whole boundary portions '), 'y, [y and vanishing outside the “support” of the relevant
nodes) and vectors P, U and W gather all the variables on the respective I' portions.
Second, the Galerkin discretization requires to employ the same functions chosen for the
interpolation of an unknown field (say u on [,) also as weight functions for the weighted
average enforcement of the equation written over the relevant locus (T'p).

This discretization procedure entails double integrations.e.g. of the type:

/r,, rrN,T(m)G“p(:zz,E)Nu(g)dF(lF; /r /r NT(2)G,,(x, )N, (€)dTdT  (10)

When all these integrations are suitably performed (see subsequent Section), eqs.(4) and (3)
together, and eq.(6) provide two linear algebraic equation systems which read, respectively:

AX +CW = Br (11)
C"™X+GW = B,+P (12)

where: . i
A=A", G=G , P:/r NT(z)p(€) dT (13)

Vectors B are generated by weighted integrations of data fields fi o h=u,pd.
Eq.(11) can be solved with respect to vector X which gathers the unknown vectors P
and U and can be substituted into eq.(12), to vield:

P=ZW + PF (14)

Clearly, eq.(14) is the discrete counterpart of eq.(1) in the continuum approach to quasi-
brittle fracture analysis.

It might easily be shown that the influence coefficient matrix Z does exhibit the essential
properties, eqs.(3)q4, of the kernel Z(z. §). namely it is negative definite (or semidefinite
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if Ty alters the original simply connectad topology of ) and exhibits symmetry. These
circumstances (referred to herein by the adjective “consistent” ), represent the main dis-
tinctive features of the SGBEM (not exhibited by traditional BEMs). togheter with the
underlying symmetry of matrix A4, ¢q.(13),. and the consequent reduced computing burden
in its factorization and inversion.

REGULARIZATION OF SINGULAR INTEGRALS AND COMPUTATION OF TIP
STRESSES

In view of the singularities of the Green functions, integrations like those in eqs.(10)
embody mathematical and numerical d fReulties which turn out to be more severe than in
traditional BEMs and have contributed to delay developments and implementations of the
SGBEM. Therefore it is worth briefly discussing below at least the approach adopted in the
SGBEM by Sirtori et al. (1992) and Frangi and Novati (1996) to regularization purposes
(regularization means here singularity -eduction). Other approaches are presented e.g. in
Kane and Balakrishna (1993).

With reference to two dimensional stuations, the former integrand in eq.(10) exhibits
the (“strong”) singularity O(r~") (with r =|| @ — € ||) occurring in traditional BEMs as
well. In fact, the kernel G, in eq.(10), for the /" displacement component in @ due to
the j* kinematic source component in &, in isotropic elasticity reads:

. 1 or or| or or ar
ij = _ o T —(1— O = m
Gipl@:8) 47 (1l — v)r {[(1 2305+ 25, 6.1);] ork " i 2")(8.7;1- i T Bz, ml)}

where v and E denote the Poisson’s efficient and the elastic modulus, respectively, m
defines the unit outward normal to [ at €; &;; is the Kronecker svmbol, with i, j,k = 1,2.
The expression (13) can be derived through the reciprocity relation (8) from kernel G,
(which governs tractions due to unit farees in Q) and, hence, emanates through differenti-
ation from Kelvin's classical fundamertal solution G.,. in terms of displacement, which is
endowed with weak singularity (logarithmic in 2D).

As for the kernel G,,, peculiar of tle SGBEM of concern here, its lengthy explicit ex-
pression can be formulated in terms of G,, as follows (n, denoting outward normal in
xz):

4 G (x. §)

Ev  8GH(x.9) E  [0Gi,(z.£)
B.I'k BZL‘,‘

1+ 0)(1—2v) oy }nk e

G (x,€) = n; +

(@ €) ( Oy, 2(1+v)
Let s, and s¢ denote the arc-length coordinates defining the position of the field point
and of the source point &. The first step in the regularization process consists in identifving

auxiliary kernels G, Gy and G, sich that:

7] : 0
G,m(ilf,g) = aTGpu('-’cv 5) G“p(:t,&) = EZGM,;(:B*£) (17)
9 0
Gz, 8 = aTIg;GW(Q{) (18)

The auxiliary kernel G, was established by Ghosh et al. (1986) and, neglecting inessential
constants, reads:

or ﬁ, — (1 — 2v)e;5logr (19)

y 1
Goule ) = Dy, Ox
3 J

ou Tan(l—v) [2(1 —v)bija + ek

R
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where a is the angle between a reference direction and the distance vector r and e;; (i,J =
1.2) is the permutation symbol. The angle a varies continously with the vector r through-
out the double integration process. Since G,,(z,§) = GZH(E.E). the second auxiliary
kernel turns out to be: Guo(x,€) = GL (€. z). As for the third kernel G, its expression
reads:

= E ar or
G (. ) = —————— | Oylogr — 5 —5— 20
"*(z §) 47l +v)(1 —v) ( 5087 ox; a:rj> (20)
Let us now consider the integrals in eq.(10). Using egs.(17) and (18) and integrating by
parts, the following identities are obtained:

9 2
/r,, [ NI@)Gp(@.)N,(&) dT T :/rn /r 5 VT (@)]G (@, ©) 5[N] T dT

0
/r“ [ NJ(@Gu(e. ON.(€)dr dr = -/r" /r N} (@)G .ol €) 5[N] 4 aT

As a conclusion of the above hints on regularization, the following circumstances are worth
noticing. (i) The above results apply if N, (z) and N, (&) are C" on ', and vanish at
the end-points of '), itself. (ii) Every term inside the integrands is weakly singular, and
not only the overall expression. (iii) The tangential derivatives are computed through
differentiation of the shape functions modelling the relevant fields.

In evolutive analyses where the crack path is not a-priori known, the conventional growth-
direction search techniques require the computation of stresses at the crack tip.

This reduces to the computation of the displacement gradient since, from Hooke’s law
and compatibility: o;; = D;]»A.,‘z)—‘;f

The collocation displacement equation in tensorial notation reads:

u,(g):/F<G{,i,(m.g)tj(m)—G;‘,';,(:c.g)uj(m))dr+/r Gl (@ E)uy(@)dl  (21)

The displacement gradient equation is obtained by differentiating eqs.(21) with respect to
the & coordinate after applying eq.(17):

ou,(§) _ ,0GL(@.§) oG, (@ &) 9 [ 0GE(x.&) @
- /r et =G 5o (@)D 4T / e aST[u,J(:c)];Qr
(22)

If eq.(22) is collocated at the crack tip without any additional hypothesis on w, the last
hypersingular integral does not yicld a finite value. This is physically correct in linear
fracture mechanics where strains are not bounded at crack tips (e.g. Cruse, 1988). In
cohesive fracture mechanics, on the contrary, it is well known that not only the displacement
discontinuity does vanish at the crack tip, but also its tangential derivative. Let 5%—11'1 be

C% continuous (and w; be C'y at the crack tip, i.c. I%u:jl = O(r®) with 0 < « <
1. Then &[G% 1-2w; behaves like O =1} (i.e. it is onlv weakly singular) and can be
Ak eulds, I B e O

numerically integrated. This implies that nonconventional modelling of the w field has to
be emploved at crack tips. Cubic hermitian shape functions or suitable combinations of
quadratic lagrangian shape functions can however comply with the condition imposed.

The above considerations are intended to concisely specify some of the main singularity-
related questions in the SGBEM and to corroborate the remark that at present they can
be satisfactorily answered to numerical implementation purposes.
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INTERFACE LAWS IN LOCAL AND GENERALIZED VARIABLES

The constitutive models, eq.(2),, attributed to the locus of potential displacement dis-
continuities as long as its two faces interact (i.e. with p # 0), in many practical situations
belong to the vast category of time-independent, path-dependent (nonholonomic), nonasso-
ciative plasticity models described by the following set of relations, borrowed from plasticity
theory of continua:

' awT o T
Aw'=—— (P.q)AN, As = —-a_q‘(P« q)AX (23)
T on
¢(p,q) <0, AX >0, P AN=0 9= 5-(s) (24)

In the jargon of platicity, @, ¥ and X are (equidimensional) m-vectors of yield functions,
plastic potentials and plastic multipliers, respectively; ¢ and s denote m'-vectors of static
and kinematic internal variables, respectively. Eqgs.(23) and (24) cover as special cases: (A)
processes of infinitesimal amplitudes (or in rates) for A — §, with ¢ that can be replaced
by d¢ (or @) in eq.(24): (B) finite-step problems over At formulated according to some
finite-difference time-integration scheme, namely with p = p + aAp, ¢ = ¢ + aAq in the
arguments of ¥ and ¢, marking by bars known quantities at the step-starting instant t
(Euler’s forward scheme for a = 0: backward difference scheme for o = 1).

In both these interpretations Ty is basically the process zone at f (exactly or with suitable
adjustements dictated by the step amplitude and by the space-modelling to see later) and
m is the number of the yvield modes which may be activated in the step.

It is worth noting that the interface model, eqs.(23) and (24), is usually formulated in
a local reference system (for reasons which are obvious in special cases, e.g. for mode
I cohesive cracks). However, for brevity, coordinate transformations are not explicitly
considered here (see e.g. Maier et al., 1993).

The option (C) of holonomic analysis in total variables and single step is not naturally
amenable to interface laws of the kind (23)-(24) when cracks with separate noninteracting
faces are expected. Therefore, for space limitations, only the interpretations (A) and (B)
will be considered henceforth.

The BIE description (4)-(6) of the lincar background equation (1), through space mod-
elling (9) and Galerkin approximate enforcement, have led to the linear algebraic equations
(11) and (12) and to their condensation (14) in generalized variables W and P concerning
locus Ty alone. The former vector W was introduced for modelling, ¢q.(9). ; the latter P,
eq.(13),, originated by the Galerkin weighted-residuals approximation.

Along a process zone I'y with two faces marked by * and ~ so that w = u* —u™ and
p=p = —pt, the energy dissipation rate reads:

/r (ptTut +p Tu)dl = —/r plwdl = —PTW (25)
d d

The second equality arising from eqs.(9), and (13). entails that the dot product of work-
conjugate variables and its energy meaning are preserved in passing from local to gene-
ralized variables. This circumstance holds for modelled tractions p, if the interpolation
functions adopted in IV, fulfill an orthogonality condition with those for displacement
jumps w in N .

p(z) = Np(z)P. NTN,dl=I, N,= N,‘.(/ NTN,.d[)™' (26)
T4 )

T4

AR
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where I denotes identity matrix and the third equation provides a convenient (but not
unique) way of satisying the second one by deriving N, from N,.

The above provisions applied to the BE generation of the discrete elasticity relationship
between conjugate quantities on I'q, for consistency must be applied also to the inelastic
interface constitution between the same quantities, eqs.(23) and (24). However, this consti-
tutive model involves other pairs of conjugate variables, namely: s.q: X, ¢: X, 1. Let the
same provisions, eqs.(23) and (26), be adopted also in the discretization of these variables
over ['y (ie. s=N,S,g=N,Q, A= NuA, ¢=N_® ¢ =N,P)

Thus, the local interface law (23) and (24) can be shown to induce the following interface
law in terms of “generalized variables in Prager sense” (this expression labelling the above
multifield, “mixed” space-modelling rests on historical reasons) with the conservation of
the original essential features (such as convexity and, if applicable, normality):

ow’ o 0¥ .o .

AW = 5P (P,Q)AA, AS= —W(P'Q)AA’ AQ = ~35 (S) (27)

- 0P 0P T (9Q)
@=Q(P,Q)+—(—9—F(P~Q)AP+W(P,Q)AQSO AA >0, P'AA =0 (28)

In eq.(28), the yvield functions, like often in plasticity, have been assumed positively homo-
geneous of order one and re-formulated accordingly with P = P+ AP, Q =Q + aAQ.
« depending on the chosen integration scheme.

SOME ASPECTS OF A COMPUTATIONAL THEORY AND CONCLUSIONS

After the space and time discretizations, outlined in the preceding Sections, the fracture
processes occurring on I'y in the time step At as part of the inelastic structural response
to external action increments turns out to be governed by the association of the non linear
relationship (27)-(28) to the linear equations:

AP = ZAW + APF (29)

The input is vector APPF resulting from a preliminary linear elastic analysis and capturing
the load increments. The solution of problem (27)-(29) is briefly discussed below on the
basis of a distinction of crucial importance from both the mathematical and mechanical
stanpoint: (I) situations in which the gradients of ¥ and ® are constant (i.e. do not depend
on the increments: P = P, Q = Q) and the internal variable potential IT is quadratic:
(IT) cases in which the above specialization does not hold.

From the mechanical standpoint, the category (I) is rather rich in the quasi-brittle fracture
context (richer than in plasticity). In fact, it includes: (@) infinitesimal processes (A — 9)
in rates: (3) finite step problems formulated by Euler’s foreward difference time-integration
scheme; (=) piecewise lincar (PWL) models, 1.c. constructed or approximated by linear ¥
and @ and hardening rules. Particular interface laws of kind (7) are the popular cohesive-
crack model in the opening mode with a PWL softening branch of traction decay to zero
(without or with “break point™).

From the mathematical standpoint, all cases in class (I) can be cast into the format of
linear complementarity problem (LCT):

—®=MAA-B>0, AAZ>0,

0% _owT
MEH ~rliap

dTAA =0 (30)

(31)
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The LCP (31) is arrived at by substituting egs.(27) and (29) into eq.(28),. Vector B gathers
data and reduces to AP when ®(P.Q) = 0, like in all rate problems. Matrix M, eq.(31),
is generally nonsymmetric and indefinite. In fact, its former addend H is negative definite
or nondefinite, as it reflects the constitutive softening of the process zone: the latter is
svmmetric and positive semidefinite (because of its generation by the present SGBEM)
whenever normality holds (i.e. @ = ¥) as it obviously holds in uniaxial constitution for
opening-mode cohesive models.

The expected absence in LCP (30) of the special features (symmetry and positiveness) of
the LCPs occurring in classical contexts (such as Drucker-stable plasticity and Signorini-
Fichera unilateral contacts in elasticity), makes the numerical solution harder and its un-
derlying theory poorer. However, the following circumstances of computational relevance
can be stated for problem (30) and, hence, for all the aforementioned approaches (a)-(7)
to quasi-brittle fracture analysis:

(a) Problem (30) is equivalent to a generally non convex quadratic programming problem
in AA only, all the solutions of which are vertices of the (polyhedrical) feasible domain
defined by the linear inequalities (30), .

(b) There is a finite number of solutions if, and only if, all principal minors of matrix M
are non-zero. (¢) All solutions can be computed in a finite number of operations (or it can
be shown that no solution exists) by an enumerative tree-search procedure consisting of a
sequence of linear programming problems.

(d) Problem (30) can be transformed into a system of nonsmooth equations in AA.

(¢) The system (d) can be numerically solved by the unconstrained minimization of a
(piccewise quadratic) norm using an iterative generalized damped Newton method.

(f) In LCP (30) in rates with symmetric M, overall strict stability (in the sense of positive
second-order work) holds if M is positive definite; if, and only if, it is copositive.

(g) When problem (30) in rates is solved (and the advancement direction has been estab-
lished), for every solution (if any) onecan trivially find the load factor increment leading to
the activation of a new yield mode (with advancement of process zone and/or crack). Thus
fracture simulations with cohesive models can be performed by steps consisting of LCP in
rates, and by linear expansion of the rate solution (possibly preceded by a tip-direction
search).

In the above list, statement. (a) can be easily proved (Maier et al., 1993). Statement (b)
rephrases a mathematical theorem by Murty (Cottle et al., 1992), here of interest in view
of bifurcations. The finite termination method (¢), devised in operations research (Judice
and Mitra, 1988) and implemented to the present purpose (Bolzon et al., 1993), requires a
computational effort rapidly increasing with the number of variables which is proportional
to the node number on T'y. The mathematical result (d), due to Robinson (1992), gave rise
to the "Path method” mentioned in (¢) and to the relevant computer code by Dirkse and
Ferris (1993) employed by Bolzon et al. (1995, 1996): with respect to (¢) the greater cost-
effectiveness of solution turned out to be partly compensated for by difficulties in finding
all solutions trving different inizializations . The stability criterion (f) was pointed out in
\aier et al. (1991). Finally, the marching solution procedure (g) has been adopted and
tested in the illustrative example presented below.

The two-notch tensile specimen of Fig. 1, with lincar softening in the mode I cohesive
crack model on Ty along the horizontal axis of symmetry has been analyzed by the SGBEM.
The results plotted in Figures 1, and 2, evidence the bifurcation (into 3 rate solutions)
and the relevant processes. The extensive local unloadings occurring in later stage of cach
nonsymmetric fracture invalidate the holonomic (single step) solution, which is illustrated
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in Fig. 2, for comparison, since holonomic solutions still amount to solve LCPs of kind
(30), in view of the PWL nature of the adopted cohesive crack model.
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Figure 1: Two-notch tensile specimen: geometry, material parameters and load versus dis-
placement plots (symmetric, nonsymmetric holonomic and nonsymmetric nonholonomic).
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Figure 2: Opening displacement between notches versus point position on I'y: holonomic
and non holonomic solutions.

As for the approaches of class (II) resting on the interface model of eqs.(23) and (24), the
latter in its full nonlinearity, several developments not dealt with herein, can be mutuated
from softening nonassociative plastic analysis (by implicit integration schemes) and possibly
from recent results concerning nonlinear complementarity problems (sce e.g. Ferris and Tin
Loi, 1996).

These topics, togheter with various computational aspects of singular integrations out-
lined carlier, represent some of several desirable prospects of future rescarch in the title
subject.



1848 Maier and Frangi
REFERENCES

Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl.
Mech.. 7, 55-125.

Bazant, Z.P. and L. Cedolin (1991). Stability of Structures. Oxford University Press, New York.

Bocca, P., A. Carpinteri and S. Valente (1991). Mixed mode fracture of concrete, Int. J. Solids Structures.
27, 1139-1153.

Bolzon. G.. G. Maier and G. Novati (1994). Some aspects of quasi-brittle fracture analysis as a linear
complementarity problem, in Bazant, Z.P., Z. Bittnar, M. Jirasek and J. Mazars (eds.), Fracture and
Damage in Quasibrittle Structures, E & FXN Spon, London, 159-174

Bolzon, G.. G. Maier and F. Tin Loi (1995). Holonomic and nonholonomic simulations of quasi-brittle
fracture: a comparative study of mathematical programming approaches, in Wittman, F.H. (eds.), Frac-
ture Mechanics of Concrete Structures, Aedificatio Publishers, Freiburg, 885-898

Bolzon. G., G. Maier and F. Tin Loi (1996). On multiplicity of solutions in quasi-brittle fracture compu-
tations, [UTAM Symposium on Innovative Computational Methods for Fracture and Damage. Dublin.
Bonnet. M.. G. Maier and C. Polizzotto (1997). Symmetric Galerkin boundary element method, Applied
Mechanic Reviews. to appear.

Carpinteri, A. (1989). Softening and snap-back instability of cohesive solids, Int. J. Num. Meth. Engng..
29, 1521-1538.

Cen, Z. and G. Maier (1992). Bifurcations and instabilities in fracture of cohesive-softening structures: a
boundary element analysis, Fatigue Fract. Engng. Mater. Struct.. 15, 911-928.

Cottle, R.W.. J.S. Pang and R.E. Stone (1992). The Linear Complementarity Problem. Academic Press,
London.

Cruse, T. (1988). Boundary Element Analysis in Computational Fracture Mechanics. Kluwer Academic
Publisher, London.

Dirkse. S.P. and \L.C. Ferris (1995). The PATH solver: a non-monotone stabilization scheme for mixed
complementarity problems, Optimization M:thods € Software. 5, 123-156.

Dugdale, D.S. (1960). Yielding of steel shects containing slits, J. Mech. Phys. Solids. 8, 100-104.

Frangi, A. and G. Novati (1996). Symmetric BE method in two dimensional elasticity: evaluation of
double integrals for curved elements, Computational Mech.. to appear.

Hartmann, F.. C. Katz and B. Protopsaltis (1985). Boundary elements and symmetry, Ing. Arch.. 55,
440-449.

Judice, J.J. and G. Mitra (1988). An enumerative method for the solution of linear complementarity
problems, Eur. J. Operat. Res.. 36, 122-128

Kane, J.H. and C. Balakrishna (1993). Symmetric Galerkin boundary formulations employing curved
elements, Int. J. Num. Meth. Engng.. 36, 2157-2187.

Maier, G. (1965) On softening flexural behaviour of elasto-plastic beams, (in italian), Rendiconti dell’Istituto
Lombardo di Scienze e Lettere, English translation in Studi e ricerche. 8, 85-117 (1986).

Maier. G. and C. Polizzotto (1987). A Galerkin approach to boundary elements elastoplastic analysis,
Comp. Meth. Appl. Mech. Engng.. 60, 175-194.

Maier, G.. Z. Cen, G. Novati and R. Taglisferri (1991). Fracture, path bifurcations and instabilities in
elastic-cohesive-softening models: a boundary element approach, in Van Mier, J.G.M., J.G. Rots and A.
Bakker (eds.), Fracture Processes in Concrete, Rock and Ceramics, E. & FM. Spon, London, 561-570
Maier, G.. G. Novati and Z. Cen (1993). Symmetric Galerkin boundary element method for quasi-brittle
fracture and frictional contact problems, Computational Mech.. 13, 74-89.

Nowacki, W. (1962). Thermoelasticity. in: International Series of Monographs in Aeronautics and Astro-
nautics, Pergamon Press and Polish Scientific Publishers, Warsaw.

Polizzotto. C. (1988). An energy approach to the boundary element method, part I: elastic solids, part
II: elastic-plastic solids, Comp. Meth. Appl. Mech. Engng.. 69, 167-184, 263-276.

Sirtori. S. (1979). General stress analysis method by means of integral equations and boundary elements,
Meccanica. 14, 210-218.

Sirtori. S.. G. Maier. G. Novati and S. Miceoli (1992). A Galerkin symmetric boundary element method
in elasticity: formulation and implementation. Int. J. Num. Meth. Engng.. 35, 255-282.

Tin-Loi. F. and M.C. Ferris (1997). Holonomic analysis of quasi-brittle fracture with nonlinear softening,
to appear. .

3



User
Rettangolo


