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ABSTRACT

A (hree-dimensional fracture problem of an infinite cracked body is considered. The body
i subjected to uniform compression along a circular cylindrical defect. The Griffith-Irwin
iheory is not applicable to this scheme of loadings since all the stress intensity factors are
sero. Instead, a stability criterion within the framework of the three-dimensional linearized
stability theory is used. It is based on a mechanism of a local stability loss around a crack-
like defect. The general approach makes it possible to use a uniform analytical method in
analyzing the problem for compressible and incompressible elastic bodies. It involves the
application of an arbitrary form of the elastic potential for large subcritical deformations
and for two variants of the small subcritical deformations theory. The numerical analysis of
ihe derived problem for eigenvalues has been carried out for different models of materials.
An influence of geometric parameter and the material properties on a value of the critical
loadings is studied.
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INTRODUCTION

it is well-known that the problems of fracture mechanics of materials under compres-
sion along a crack represent a special class of problems because they cannot be adequately
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described by the relations of the linear fracture mechanics. As the stress intensity fac-
tors, crack opening displacements and energy release rate are independent of these loads
(Cherepanov, 1974), the classical fracture criteria of the Griffith-Irwin type, the crack
propagation criterion (Wells, 1963; Panasyuk, 1986) and also their generalizations used in
the linear fracture mechanics are not applicable to this scheme of loadings.

In the situation when compressive loads are applied to the bodies along a crack, failure
may occur by instability. For these non-classical problems, we will use a failure criterion
(Guz’, 1981) within the framework of linearized stability theory according to which the
initiation of the fracture process coincides with a local stability loss near the crack-like
defects.

Planar and spatial fracture poblems of materials examined on the basis of linearized
formulations in the case of compression of solids along a single crack or crack arrays dis-
tributed in the same plane were analysed by Wu(1979, 1980), Guz’(1982, 1983); compres-
sion of materials along subsurface cracks were examined by a number of authors (Keer et
al., 1982; Guz’ and Nazarenko, 1985; Nazarenko, 1986a, b); compression along a periodic
system of parallel cracks and two internal parallel cracks were studied by Guz’ et al., (1984,
1987).

However, until now all these iavestigations based on the linearized theory were carried
out for solids with the plane cracks. In the present paper compression of elastic mediums
along a crack located on a cylindrical surface within the linearized stability theory of de-
formable solids is studying.

PROBLEM FORMULATION

Consider an infinite elastic medium with a circular cylindrical crack of lenght 2a and
radius b. Let (r,0,z3) be the cylindrical coordinates with the zz— axis, coinciding with
the axis of the cylindrical crack. Then, the crack occupies the region: {r = 5,0 <0 <
21, —a < z3 < a}. The infinite body is subjected to uniform uni-axial pressure in the z3—
direction at infinity.

The disturbance of asymmetiic Kirchhoff stress tensor denoted by t is referred to the
unit area of the undeformed body. The disturbance of the displacement vector is 4. The
symmetric stress tensor in the undisturbed state is denoted by S.

As a result of the compression parallel to the crack axis, a homogeneous subcritical
stress and strain state occurs neur the crack-like defects

859 =52,=0, 5% #D, (S5 = const);
(1)
uf = 6jm(Aj — Dem, M =h#X, (A= const); (A3 <1),

where the superscript 07 refers to the initial state so that Sf; are the components of
symmetric stress tensor in the undisturbed state; u? are the components of the displacement
vector; T,, are Lagrangian coordinates which coincides with the Cartesian coordinates in
the undeformed state; the parameters \; are the contractional ratio while é;; is Kronecker
delta.

Denote by the superscript ”l” the quantities referred to the region r < b and by the
superscript ”2” the quantities rsferred to the region r > b. It is assumed that the crack
surfaces are free of stresses. With reference to the foregoing two regions we have the
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following conditions
tglr) =0, tg) =0, t,(_;) =0, t,(_? =0, (7‘ =b—a<z3< a’)‘ (2)
At the boundary between the regions ”1” and ”2” outside the crack (r = b, |z3| > a),
the conditions of the stresses and displacements continuity should be satisfied
m_,@ (2)

ur ur u:(;) =u? (r=b,lzs| > a);

(3)
W =@ =4 (r=0,lzs| > a).

Due to symmetry with respect to the plane z3 = 0, the boundary conditions (2) and
(3) can be rewritten as follows

W =1@ =12, (p=1,0=<1(|<00); (4)

uD—u® =0, W) —u =0, (p=1,1¢1>h); (5)

W =1@=0, @=tD=0, (p=1,¢<h). (6)
where

p=r/b; (=uz3/b; f=afb, (7

are the dimensionless values.

(ieneral Solution of the Azisymmetric Problem

The general solutions in the case of axisymmetric problem under the homogeneous ini-
tial state (1), for unequal roots (n1 # n,) are represented by relations

Op1 | Opr 01 Op2
Uy o + o uz = my e + ma 373 (8)
where the potential functions ;(r, z3),1 = 1,2 satisfy the following equations
2 10 o2 :
B Pl (T, =0, =1,2). 9
(arz t o +”’azg> #ilr, 2s) =32 9)
The representations for the components of Kirchhoff stress tensor ¢ are given by
32901 32902 .
trs = Caa [dl Ordzs +dz ordzs| ’
0 0* 0 ik

= = —— t = - lo—-+ 53 . 10
tyr = Cag [ 2 <llr6r + 69:?,) P1— P2 ( iy + 32 2 (10)

where the following notations are used
for compressible bodies

Cos = wizz, i = (wnnni — wa113) (w133 + wiaa)
d; = 1 + mwianwizia s (i=12); )
pi = (niwnn + Miw133)Wisna ;

l; = (wnn — wiizz)(niwim + miwnas)
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for incompressible bodies

Cas = ®1313, m; = q11q3_31nj )
dj = 1 + @iam @i, ; (G =12);
pi = [1111(13—31(1»’31133 + @1313)n; - @1133M5 + a'53113] ®a (12)

lj = (331111 = 851122) [q11q§3‘(&1133 + 881313)”;‘ — &@1133M; + <'3'33113]_1 ;

Note that representations (8), (10) are formally similar to representations of the general
solutions of the linear elasticity theory for the transversely isotropic body. They turn into
the latter only when w313 = wai1s = wiss. But this symmetry condition is not realized in
the case under consideration.

RESEARCH DESIGN AND METHODS

In order to obtain a system of dual integral equations, the theory of the Fourier-Hankel
integral transforms is used. Then the derived integral system by use of the series expansion
method is reduced to a system of the linear algebraic equations.

Derivation of dual integral equations

The potential functions ¢;(r,s) and (T, z3) referring to the regions ”1” and 72” can
be represented in the form of Fourier- Hankel integral transforms that satisfy the regularity
conditions for the displacements aid stresses as 7 — co. Referred to the region ”1” we
have

C44<p§1)=/ ai(MIo(v/midplcos (AdA, (i =1,2). (13)
o
Similarly, to the region ”2”
Caapl? = / bi(\) Ko(y/midg) cos CAdX, (i =1,2), (14)
0

where a;(}), b;(X),i = 1,2 are urknown functions; Io and Ko are the modified Bessel
functions.

Substituting (13), (14) into (8),(10) and making use of the boundary conditions (4), we
determine the unknown functions k(}) in the terms of a;(A),i = 1,2. From the remaining
boundary conditions (5), (6), the following system of dual integral equations is obtained
with respect to the new unknown functions K.(\) and K.(})

/”A[aum(m T K+
+ Pa(h) Ke(N)] cosCrA =0,
(0<¢<B); (15)
/ MamK. )+ Fn(d) K0+

+ u(N) K,(A)] sinCAdA =0,
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/°° K.(X)cos¢AdXA =0,
(B <(<o0). (16)
/ K.(A\)sin¢{AdA =0,

0

where aq; and agg are the following constans

_ Vmdip: — V2dapr

- b= V/Pidipy — \/radap (17)
BTNl —dy)ymyre 0 2Amap—map)
.'1])(1
Ta(N) = () = 0(1/3); ¥na(A) = a(A) = 0(1/2). (18)
The obtained dual integral equations will be reduced to a system of linear algebraic
equations.

Solution of the Dual Integral Equations

I'he possible way of solving of the system (15), (16) is as follows. The unknown func-
tions are chosen in such manner that the equations (16) will be satisfied automatically.
I'herefore, one can solve these integral equations by use of the series expansion method.
I'hat is, we make use of the following expansions

KN =S ad (BN K() = Y bA T o (BX), (19)
1=0 j=0
where aj, b; are unknown constants; J; are Bessel functions of the first kind. After substi-
{uting equations (19) into (16), we find that the both integral equations are automatically
satisfied.

From the remaining equations (15), making use of the following expansions for functions
cos (A and sin (A

cos(/\:ZEiJg,-(,BX)cosZiap; eo=1, =2 (i>21);

sin(h =Y 2l (BN)sin(2i+ Dp; ¢ = arcsin(C/f), (20)
1=0

we obtain the system of the linear algebraic equations with respect to the unknown a; and
b

3 aj(an Ry + Rij) + SbT; =0, i=0,1,2,3,4,... ;

7=0 7=0

Y asPyt 3 bi(anQi+ Q) =0, 1=0,1,2,3,4,... . (21)
=0 =0

where Rij, ... , Qi are infinite integrals.
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For the existence of a non-trivial solution of the homogeneous system of the algebraic
equations (21), the determinant of this system must be set equal to zero.

Hence, for compressible and incompressible bodies we have, respectively, the following
relations

det [[dei(B, Ao, )| = 0; det||dui(B, ds, @) =0, (k,1=12,...). (22)

Therefore, the problem for eigenvalues with respect to the parameter A3 < 1 is obtained.

NUMERICAL RESULTS AND CONCLUSIONS

The problem reduced to the eigen-value problems for equations (22) are solved numerically.
In solving equations (22), we must evaluate the infinite integrals denoted by Rij,...,Qij,
(3, = 0,1,2,...). For this purpose we separate a finite and an asymptotic part of these
integrals. The former one is evaluated by use of Gaussian-quadrature formulae. The latter
part of the integrals after rearranging can be written in the following form

© Ju(y)Jn
Fk(m7n,yo) = / —(i)kd(y—)_dyv (k = 112)7 (23)
o y
and it has been evaluated by use of the following formulae (Kasano H. et al., 1981)
2sin[{mz2)7) To
Fimim,zo) = s+ e I (20) (o)
Jalzo)ulz
e (a)] - Z2EORE) ),
1 m—1
R ma) = g [0 +2 2 JHao) + (w05 (m=n >0
. and so on (24)

Numerical results are obtained for elastic solids with the Lame potential as well as for
the series of the uni-directionally fiber reinforced composite materials, for example, such
as e.glass—epoxy and graphite—epoxy.

The values which enter into the foregoing relations are presented below.

Lamé potential (compressible body)

@ = A+ s, (25)

where A, A, are algebraic invariants of the Green’s strain tensor; A, are parameters of
Lamé. The values (11) for the Lamé potential (25) can be written in the following form

mi=1+4v(l +v)(As—1), mg =1;
dy =2+ 4v(1 +v)(As — 1), dy =2;
p=2+214+20)1+v)(hs = 1), p2=2+2(1+v)(As—1);

L=1/1+0+2)1+v(As 1), k= 1/0+Q+v)(As—1))- (26)

The dependence of the critical shortenings )Y on the dimensionless parameter B1is
presented in Fig.1. The plot shows that the curves of the critical shortening A§ increase
as 3~ — oco. The curves 1, 2 and 3 correspond to values of Poisson’s ratio v = 0.1; 0.2
and 0.3, respectively.
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Composites (compressible materials, small subcritical deformation theory)

The results for uni-directionally fiber reinforced composites made of e.glass—epoxy (a
fibre concentration is 0.65) and graphite—epoxy (a fibre concentration is 0.5) are obtained.
I is assumed that minimum crack dimensions in the composites are essentially larger than
the dimensions of its structural elements, i.e. macrocracks are considered. Under such

assumptions, the composites are regarded to posses transverse isotropy.

(1—ev?)e ;

e
= E =-E';
Wi A +v)(1—v—2ev )" w1133 )

e e
wiais = —E’, W3113=(—+)\3—1)E';
g g

ev’ , E E

wiw =TT, gm0 B TG @)
1—v i _ e

w3333 = (m‘i—)\s—l)E » Wi = 5y

Variations of the critical values of A§ for composites withv = 0.3,v =02,E/E' =08
and different ratios of E/G’ are shown in Fig.2. The curves 1 and 2 correspond to
I:',/(v" = 40 and E/G' = 20, respectively. Here, E,G and v are Young’s modulus, shear
imodulus and Poisson’s ratio in the isotropic plane, while E',G"and v " are the correspond-
ing ones in the principal material direction. As indicated by the results, the ratio E/G’
and parameter B! have a strong effect on the critical values of A5".
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