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ABSTRACT

Thin-walled structures (plates, shells, tubes etc.) made from metals or alloys are showing
typical creep behaviour under moderate loads at a high temperatur (below 0.3 - 0.4 of the
melting temperature of the material). For estimation of the operating time or repair cycles
it is necessary to take into account the creep behaviour and the damaging as first step of
the formation of cracks (Continuum Damage Mechanics approach). Using the flow theory
of creep and a damage evolution equation based on the Lecky-Hayhurst-criterion the in-
fluence of the maximum principal stress on the damage development in rectangular plates
is investigated. The limit state of the plates is defined by the critical damage parameter
value. This value is connected with the coalescence of microdeffects in the material. So
the limit state can be the starting point of the fracture mechanics analysis of the failure
propagation.
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INTRODUCTION

The creep in a metal or an alloy can be described by three models, connected with the
existence of three different stages: primary, secondary and tertiary creep (Smith, 1990).
This is an idealization of uniaxial creep curves (strain versus time), which slope can be
used as a measure for the classification of the creep stages. After an instantaneous rapid
elongation (elastic strain) we can obtain that the strain rate decreases with time (primary
creep). Then we get a part of the creep curve in which the creep rate is approximatly con-
stant (secondary or steady state creep). The third part of the creep curve is characterized

by material softening and an acceleration of the creep process.

The acceleration of creep during the tertiary stage is often caused by coalescence of micro-
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kind of loading (tension, compression etc.), we can introduce the potential 2 as a function
of the von Mises equivalent stress
3 1
oM = /255, s=0— (o), (3)
2 3
where s is the deviatoric part and Ji(o) is the first invariant of the stress tensor. Then
the constitutive equation for the creep strain rate tensor can be written as

. 380R(c*M) s
cr i N 4
2 fovM M )
In the case of Norton’s creep law the potential 2 and the Eq. (4) can be expressed as
a 3
n= yM\n+1 ser o = vM\n—1
——n+1(0 )y, €7 =ga(o )'Ts (5)
ure.

where a, n are the material parameters, defined by uniaxial tests at a constant temperat

terial can be described by the introduction of a continuous
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The damage state of the ma

mechanical internal variable.
given by Kachanov, 1958 and Rabotnov, 1969. It is based on t
f a specimen. The constitutive equation for creep strain rate

of the cross—section area o

has been formulated for one dimensional case as the modified Norton’s creep law and
the damage rate was postulated as a function of stress and of actual damage state. The
extension to multiaxial stress states was considered by Hayhurst and Leckie (1977). The

damage evolution is expressed in terms of invariants of the stress tensor. The following

extended constitutive equations are used here

&7 = SR(™MK(d) 4= ROH [X(@))] @
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o ={ ¥ X %o ®)

vM (9)

x(o) = aoy + Bi(o) + (1 —a = F)a"",

where d is a scalar damage variable, d. is a critical damage value, x(o) is a multiaxial
damage criterion with o) as the maximum principal stress. The material parameters o,
B denote the material sensitivity to the failure mode. The functions F, K, R, H must
be identified from uniaxial creep experiments. A suitable approximation for metalls and

alloys is (Moratschkowski and Naumenko, 1995)
Kd=0-d™

H(o) = bo*, R(d)=(1- d)

with a, b, n, k, m, [ as material parameters. The given Egs. (6) represent mathematical-
ly a set of first order coupled differential equations with corresponding initial conditions
(7). Their application to the analysis of structures leads to the formulation of an initial-
boundary value problem. The damage parameter d is defined to be an unknown continuous
function of coordinates with respect to the location of the material points of the analyzed

(10)
(11)

F(o) = ac™,
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where Q; are the transverse shear forces.
On the plate boundaries (edges) the kinematic and (or) static boundary conditions must

wlp =uh, wlp=w, Walr=win = 9,
(18)

where n; and 7; are the components of the normal and tangent unit vectors to the plate
boundary I" and u}, uj, w*, N, M*, Q* are given kinematic and static parameters. The
initial-boundary value problem is completely defined by the set of Egs. (12) - (18) with
respect to the constitutive law (6) and the initial conditions. Setting ;]

of the elastic problem follows from these equations.

= 0 the solution

NUMERICAL SOLUTION PROCEDURE
pled

The solution of the creep problem is performed by time-step discretization. The cou
are sensitive to the time-integration procedure. In order to
hod

creep-damage equations (6)

obtain the stable solution (especially for the tertiary creep state) the implicit Euler met

is used. The numerical procedure is realized in the form of the fixed—point iteration scheme
The time step sizes are choosen in dependence on

(cp. Lemaitre and Chaboche, 1990).
step the following variational

the convegence of the iterations. At each time (iteration)
problem with fixed creep load components must be solved

. / (= (gla)~ N () Nia(0) + 9oy () pona ()] dA
(19)

I(p,w) = 3
2
A
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with N1 (¢) = ¢22, Na2(d) = 1, Ni2(¢) = —¢ .12, where ¢ is the Airy’s function and
Ng, M are defined from creep strain and damage
t; and must be determined from the

A is the plate area. The creep loads N7,
fields, which are assumed to be known at the time step

previous time step t;_1. Details of discretization procedures and results of the numerical
testing as well as some examples of verification are discussed by Altenbach and Naumenko
(1995), Moratschkowski and Naumenko (1995) and Naumenko (1996).

NUMERICAL EXAMPLE

We consider a clamped square plate under uniformly distributed load. The calculations are
=3.10"%m, [ = 8-10~2m with [ as plate length. The

performed for the case g. = 0.3 MPa, h

material parameters are given for a nickel-based alloy (cp. Moratschkowski and Naumenko

1995): a = 9.89-10"1°MPa™"/h, n = k = 2.4, m = ] =34, b=5.45-10"8MPa~*/h. It is

difficult to carry out the multiaxial creep experiments for the identification of the material
the sensitivity of the material

constants o and £ in all application cases. In order to show

behaviour and of the damage evolution in plates to the mode of failure the numerical ana-
ge evolution of material is caused

lysis has been performed. It is assumed that the dama
only by the maximum principal stress. Therefore the Eq. (9) is used by 8

— 0. By the
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integration of the damage evolution equation (6) the isochronous rupture surfaces can be
obtained. Fig. 1 shows these surfaces by different values of 0 < & < 1 in the dimensionless
coordinates oy /09, 02/0¢ With oy as the uniaxial failure stress.

Fig. 1 Isochronous rupture surfaces: 1 - a=0; 2 - a = 01;3-aa=02;4-a=0.5;5-
a=1

The simulation of time-dependent behaviour of plates was performed by different values
of a. The results for the evolution of deflection, stress and damage fields are given by
Naumenko, 1996. Here we show the distribution of the field damage parameter on the
upper and lower side of the plate at the critical time t,, Fig. 2. By a = 0 the damage
criterion (8) denotes the von Mises equivalent stress. The tensile and compressive stress
states have the same influence on the damage evolution (Fig. 1). For the plate problem
considered the bending stress state dominate and the small membrane stresses occur due
to geometrical nonlinearity of the plate bending. Therefore the difference between the da-
mage distributions on the upper and lower side of the plate is small, Fig. 2. By a > 0 the
damage evolution is influenced by the maximum principal stress that damage zones in the
plate corresponds more to the tensile stress state. By a = 0.5 the distribution of damage
is completely nonsymmetrical across the plate thickness.

CONCLUSIONS

In the paper a model for numerical analysis of thin rectangular plates under stationary
bending load is proposed. The phenomenological constitutive equations are formulated
with the introduction of the scalar damage parameter to characterize tertiary creep. The
corresponding initial-boundary value problem is formulated using the governing equations
of the geometrically nonlinear plate theory. The numerical example shows the sensitivity of
damage states in a square plate to the maximum principal stress. The maximum principal
stress influences the significant difference of damage evolution by tensile and compressive
loading.

The used Continuum Damage Mechanics approach allows a description of deterioration
processes in the material such as micro—crack initiation by multiaxial stress states. The
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Fig. 2 Distribution of the damage variable on two plate sides, to is the failure time in the

case o =0
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the structure (cp. Scrzypek 1993) can be predicted in terms of the classical continuum

mechanics. The failure state is lefined by the critical value of the damage parameter. The
stress, strain and damage fields obtained is the starting point for the analysis of the failure
Propagation i the structure by use of the Fracture Mechanics approach (cp. Chaboche
1987)
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