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ABSTRACT

A mesh independent finite element method is presented to describe strain softening with a
nonlocal version of Gurson’s damage model. The backward Euler scheme is used to inte-
grate the constitutive equations. The nonlinear problem is solved by the Newton method
which requires the derivation of the consistent tangent operator. A two step algorithm is
presented which preserves the quadratic convergence of the global Newton iteration but
involves the nonlocal description in an explicit manner. A numerical example involving
mode II failure is presented to demonstrate the convergence and capacity of the method.
Further, the method is applied to the ductile crack growth in a CT- specimen. Finally, the
quality and the limits of the method are discussed.
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INTRODUCTION

The specimen size and geometry dependence of the crack resistance curves is a well known
problem in the analysis of ductile crack growth. Several concepts have been developed
to deal with this problem. Macromechanical approaches introduce additional fracture
parameters while micromechanical concepts attempt to incorporate the failure process
into the constitutive description of the material as e.g. the model presented by Gurson
(1977) which describes the ductile failure process by nucleation, growth and coalescence of
microvoids.

However, the application of the damage model involves strain-softening on the macroscopic
Jevel, while on the microscopic continuum scale this phenomenon may not exist. From the
mathematical point of view, strain-softening leads to loss of ellipticity of the partial differ-
ential equations governing a given static boundary value problem. From the physical point
of view, strain localization results in zero energy dissipation at failure. The consequence
for finite element solutions is the observation of a strong mesh dependence. Therefore,
a special treatment of the governing equations is necessary in order to limite the energy
dissipation. In the past several regularization methods have been developed in order to
solve this problem.
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The introduction of the Cosserat continuum (e.g. Miihlhaus, 1989; de Borst, 1991) has
the disadvantage that the regularization works only for mode IT dominated failure because
the additional rotational degrees of freedom must be activated in the problem. Material
models taking rate effects into account (e.g. Needleman, 1988; Sluys and de Borst, 1992)
work well only if very high, sometimes artificial viscosity parameters are chosen. In the
recent years the exclusion of the localized zone from the field description was applied
successfully by introduction of regularized discontinuities in the finite element formulation
(e.g Larsson et al., 1993; Oliver and Simo, 1994; Miehe and Schroder, 1994). Motivated
from the physical drawback that the damage zone in a structure is always concentrated in
a very small region before or around the actual crack tip, cohesive frictional models were
developed (e.g. Tvergaard and Hutchinson, 1992; Hohe and Gross, 1996) which work well
for problems in which the crack path is known a priori. A more general use is possible
in the range of gradient plasticity (e.g. Aifantis, 1984; de Borst and Miihlhaus, 1992),
which has been recently applied successfully. From the physical point of view, however, it
is difficult to define the additional beundary conditions, a problem which arises also within
the range of Cosserat continua.

Nonlocal approaches (e.g. Bazant ef al., (1984); Pijaudier-Cabot and Bazant, 1987) have
the advantage of a wide range of applicability and a physical explanation can be given for
the intervening characteristic internal length scale as e.g. the localization thickness in the
real material. For these reasons, the nonlocal concept has been chosen in this work.

THE GURSON MODEL

Gurson’s model in modified form as given by Needleman and Tvergaard (1994) uses the
yield condition
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Here, o;; denotes the macroscopic stress tensor, o, the macroscopic equivalent stress, o
the actual yield stress of the matrix material, f the real and f* the effective void volume
fraction respectively; qi, fc and f, are material parameters. The void volume rate

f=(-f) e+ A (3)

is assumed to consist on the growth of existing microvoids and the nucleation of new voids,
where a dot denotes the partial differentiation with respect to time. The first term in eq.
(3) can be derived from the condition of plastic incompressibility of the matrix material,
while the usual statistical approach is used for the nucleation as suggested by Tvergaard
(1989): )
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Here €7 denotes the equivalent plastic strain rate of the matrix material and fu, €n, Sy
are material parameters describing the nucleation of microvoids. The total plastic strain
rate is split additive into an elastic part governed by Hooke’s law and a plastic part for
which an associated flow rule is assumed. An evolution equation for the equivalent plastic
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sirain rate of the matrix material is obtained by taking into account that the macroscopic
and microscopic plastic work rate must be equal:
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Finally, a power-law hardening matrix material is adopted.

(5)

NUMERICAL INTEGRATION
Stress Integration

A key point for the implementation of the constitutive equations (1) - (5) is the choice
of the integration scheme. Explicit schemes (cf. Ortiz, 1986) have the advantage of easy
Jerivation and implementation. On the other hand they are instable and very small time
steps are necessary to obtain an accurate solution. Therefore, implicit algorithms became
very important in the last years because of their stability and good accuracy even for large
time steps. Zhang and Niemi (1995) examined the generalized mid-point algorithm for the
(iurson model in particular and found the Euler backward algorithm to be the best choice.
For these reasons the implicit Euler backward scheme has been chosen in the present
study, in which the problem to be addressed is that of updating the known state variables
Eijs ! 0ij, f and %% on the actual time increment. For this purpose it is useful to introduce
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two scalar variables
where s;; denotes the stress deviator. The Lagrange multiplier 7 is split into a pressure
dependent and independent part

Aep = y— qu =¥y (7)
o that all variables of the equation system (1) - (5) can be expressed in terms of four

unknown increments Ag,, Agg, Af, As’,’é,. The following nonlinear system of equations,
which has to be solved on each Gaussian point, is obtained:
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The system of equations is solved by Newton’s method, where the consistent tangent moduli
are derived following the suggestions of Aravas (1987) and Zhang and Niemi (1995). During
the constitutive calculations, where stress and state variables are updated, the total strain
is known. The elasticity equation yields

U:;-A‘ = C,’]'k[(Eﬁ-At = Si’lp) - KAE,,ISI‘J - QGAeqn,] (9)

where n;; = 3s,;/2q and K, G being the elastic bulk and shear modulus, respectively. The
derivation of the consistent elastoplastic tangent moduli requires the exact linearization of
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eq. (9) as:
dU,‘j = ijkldfkl — Kd(Afp)éij — 2Gd(A5q)n,-j o= 2GAEq%‘g}ld£H (10)
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and d(Ae,), d(Ae,) can be determined by the solution of a linear system of equations.

After some algebra the following explicit expression for the consistent tangent moduli is
obtained: 5
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with the scalar values d; — ds as defired in Zhang and Niemi (1995).

Nonlocal Integration

The simplest form to introduce a localization limiter in a nonlocal sense is obtained by
imposing a lower bound on the finite element size. This concept, however, has not only
the disadvantage of limiting the mesh refinement, but also the worse deficiency of a de-
pendence on the mesh alignment. A concept for strain softening solids in which all state
variables were considered as nonlocal was successfully applied by Bazant et al. (1984).
This rather complex method, however, posed many difficulties in real problems. Bazant
and Pijaudier-Cabot (1988) found that the nonlocal concept can be simplified by consid-
ering only the damage variable as nonlocal. A weighting function is applied to the actual
porosity increment as follows:
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where the bar on a variable denotes its nonlocal character and p(x) the weighting function
being the normal distribution, normalized to unity:
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where z, ; denotes vectors to spatial points, Q the volume studied and [. the characteristic
length. For finite element application the integral in eq. (13) is replaced by the sum over

all elements:
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With eqns. (8) and (13), which form a system of integro-differential equations, tiie problem
is now defined.

For the stress integration the classic return mapping algorithm is used. No spatial depen-
dence is taken into account. By this method the consistent tangent operator, known from
the ’local’ theory, can be used without modification ensuring the quadratic convergence of
the global iteration. The nonlocal porosity is computed after local and global convergence
in a typical time step. Consequently, the algorithm is only explicit with respect to the
nonlocal formulation and very small time steps are necessary to obtain a good accuracy of

(15)
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the global solution. However, some difficulties may arise in the presence of large porosity
gradients as e.g. near the crack tip. They are caused by the explicit part of the algorithm
which is the reason for jumps between elastic and plastic states with respect to time at
some Gauss points. However, this effect does not seem to affect the accuracy, if small time
steps are used.

RESULTS

Shear band in a rectangular block

As a first example the presented method is applied to a rectangular block under tensile,
strain controlled load (cf. Fig. 1). An imperfection in form of a higher initial porosity in
one element was introduced in order to create a shear band localization. To simulate a
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Figure 1: Localization thickness in three different meshes.

real material behavior, the parameters for the Gurson model are taken from Klingbeil et
«l (1993) who found a good agreement with experimental data. Three different meshes
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Figure 2: Porosity contours in three different meshes.

are used where the internal length was chosen equal to the element size in Fig. (1a). The
comparison of the meshes in Fig. (1) shows that the shear band has a constant thickness
s expected. In contrast to the nonlocal results, the same problem, solved with the local
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theory, shows that the localization thickness depends strongly on the element size in that
sense, that the shear band localizes in one element. The contour plots of the porosity also
show the good agreement of the three results (cf. Fig. 2) which proves the capacity of the
presented method to describe mode IT localizations without mesh dependence.

Ductile crack growth in a CT specimen

In .t.his se'ction, a CT-specimen is tiken as example in order to verify the method for mode
AI SImulatlor.ls. The 1'xsed geometry is given in Fig. (3a). The same material parameters as
in the previous section are applied The half-discretization as shown in Fig. (3b) is used
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Figure 3: Geometry and discretization of a CT-specimen.

wh?rﬁ the element size in the ligament and the characteristic length is varied in four cases
as follows:

A) element size 0.25mm . =0
B) element size 0.10mm [ =0
C) element size 0.05mm . =0
D) element size 0.05mm I = 0.10mm
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Figure 4: Nonlocal result of a CT-specimen.

In Fig.‘ (4a) the load-deflection curves are plotted for all four cases. As expected, the
comparison of the local results shows a remarkable mesh dependence. The load-deflection
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curve of case B and D in which the mesh size corresponds to the nonlocal internal length, are
in good agreement. This result shows that nonlocal solutions are convergent if the element
size is chosen less or equal to the characteristic length. In Fig. (4b) the crack length is
plotted over the displacement for the same cases. Whereas a qualitative agreement between
the corresponding local and nonlocal cases B and D can be observed with respect to the
load-deflection curves, this conclusion cannot be drawn for the crack length. This can be
explained by the establishment of a diffuse crack in the nonlocal solution. However, this
phenomenon seems to affect only the crack initiation phase.

SUMMARY

A finite element method to describe strain softening in a ductile material by means of
Gurson’s damage model was presented. The well-known mesh dependence encountered
by the loss of ellipticity of the governing equations could be avoided by introduction of
 nonlocal formulation with respect to the porosity only, which characterizes the damage
state in the material. The constitutive relations, leading to a integro-differential system
of equations, are solved by a time integration algorithm in two steps. In the first step the
stresses are updated implicitly using the classical closest point projection in conjunction
with the consistent algorithmic tangent moduli. In the second step the nonlocal damage
variable is updated explicitly using the converged local solution.

Two numerical examples demonstrated the convergence and capacities of the presented
method. However, some difficulties arising must be mentioned if the element size is chosen
much smaller than the internal length. The reason for this behavior seem to be caused by
the explicit part of the algorithm; numerical stability and sufficient accuracy of the solution
can be obtained only for very small time steps resulting in a large amount of computing
time. Investigations to improve the numerical scheme are in progress.
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