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ABSTRACT

In the present paper, a theory and an analysis method for cracking localization are pre-
sented. The method to judge the initiation of localization and to find the localized solution
is presented through consideration of spring-crack element models. It is shown that the
problem is reduced to a minimization problem under constraint conditions. The theory
is generalized and applied to problems of cracking localization in concrete. The proposed
method can reproduce the localization of initially distributed cracks into a single crack in
a four-point bending test. It is shown that to capture the ultimate strength of structures
treatment of the localization of cracks or shear failure planes is necessary in many cases,
and minimization problems under constraint conditions are the problems to be solved.
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INTRODUCTION

Fracture Mechanics of Concrete: Fracture mechanics is one of important study fields which
has brought remarkable contributions. After the great success in brittle materials, fracture
mechanics has been growing by extending its subjects. Fracture mechanics of concrete
has been studied extensively for more than 10 years (Mihashi et al., ed., 1993; Karihaloo,
1995; Shar et al., 1995; Wittmann, ed., 1995), while the pioneering work by Hillerborg
et al. (1976) is traced back to 1970’s. Mode I crack growth in concrete is characterized
by the stress transmission -across the crack surfaces and the material property is repre-
sented by a tension-softening curve, the relationship between the transmitted stress and
the crack opening displacement. The success in fracture mechanics of concrete is not lim-
ited in the modeling and material characterization, but it bears fruit in design methods
and development of new materials.

Fracture Mechanics Based Design Method: A fracture mechanics based design method
of steel-fiber-reinforced concrete (SFRC) tunnel linings proposed by Nanakorn and Horii
(1996a) is adopted in a design provision in Japan. The design method is studied based on
FEM analysis with an element having a displacement discontinuity and a tension-softening
curves obtained by the back analysis method proposed by Nanakorn and Horii (1996b).
Existence of a crack and transmission of stress by fibers are considered in the estimation
of the maximum resultant forces of the critical cross-section.

Development of new materials: Fracture mechanics also plays an important role in devel-
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opment of new materials. Li (1996) has developed strain-hardening cementitious compos-
ites, named Engineered Cementitious Composite, ECC. An analytical tool is necessary for
the evaluation of the performance of new materials used in structural members. Kabele
and Horii (1996) proposed such a numerical method for ECC. Both multiple and local-
ized cracking, which are characteristic of this class of materials, are represented in the
model. A plasticity-based modeling method 1s used for the distributed multiple crack-
ing, while discrete modeling is employed for the localized cracks. Fracture tests of pseudo
strain-hardening cement-based composites are analyzed, and predicted fracture energy is
compared with reported experimental results.

Cracking Localization and Ultimate Strength of Structures: Tremendous damage of struc-
tures in Kobe earthquake (The Great Hanshin Earthquake) demonstrated the new role and
direction of fracture mechanics. The shear failure of RC (Reinforced Concrete) columns led
to catastrophic collapse of structures as shown in Fig.1. RC structures must be designed
so that shear capacity of their cross sections is larger than its bending capacity. However,
the estimation of the shear capacity which depends on the size of the structure and many
other factors is based on experimental data and no analytical methods exist which can
predict the shear capacity as a result of numerical computations, except that Okamura
and Maekawa’s group recently succeeded in predicting the shear failure by FEM for RC
structures (An, 1996).

To capture the shear failure of RC columns, the direct application of fracture mechanics
of concrete is not sufficient, but the treatment of cracking localization is required. For
structures without a notch or a stress concentrator, the cracking condition is satisfied at
many places and conventional numerical methods without judgment of localization predict
cracks distributed in a region. In reality, the cracking is localized and discrete cracks are
formed. It is not just a matter of numerical techniques, but a fundamental difficulty lies
behind this problem.

Figure 1: Collapse of Shinkansen RC rigid Figure 2: Propagation of shear failure planes
frame viaduct by shear failure. in artificial soft rock.

The same problem is encountered in the numerical analysis of formation and propagation
of shear failure planes (shear bands, sliding surfaces), which is important for example in
the safety assessment of rock foundation of important structures. If displacement disconti-
nuities are introduced when the failure condition is satisfied, then the shear failure planes
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are distributed over a region. In reality, the shear failure planes are localized as shown in
Fig.2.

The allowable stress design method has been replaced with the ultimate state design
method in various fields. This implies the necessity of analytical tools which can cap-
ture the ultimate strength of structures. Since the ultimate strength of structures are
governed by the formation and propagation of displacement discontinuities in many cases,
the associated localization problem possesses essential importance.

Localization phenomena are observed in variety of materials with different mechanisms of
inelastic behaviors. Their global behaviors have common features. Hence it is expected
that the localization phenomena in different materials are captured by a unified theory.
Localization phenomena are classified into two categories; localization in material level
and that in structural level. Strain localization in metals, which has been a hot topic in
solid mechanics (Needleman and Tvergaard, 1992; Tomita, 1994), belongs to the former
category, while the cracking localization discussed in this paper is classified as localization
in structural level.

Two types of localization phenomena share a common principle. They often appear in
the same problem. For example, the formation of the shear failure plane is the result of
strain localization, while the progress and elastic unloading of multiple shear failure planes
are governed by the localization in structural level. In this paper, attention is paid to
the localization in structural level, and the localization in material level is treated with a
simple failure condition.

LOCALIZATION IN SIMPLE SPRING-CRACK ELEMENT MODELS

In this section, simple models with spring and crack element are studied in order to establish
a theory to judge the bifurcation from a fundamental or “homogeneous” solution to a
bifurcated or “localized” solution and to select the “localized” solution that nature chooses.

Model with a Spring and a Single Crack Element

Fig.3 shows a model which consists of a spring with a spring constant k and a crack element.
The crack element starts to open when the force f reaches the capacity f., and after that the
force changes as a linear function of the crack opening displacement « with a modulus A, as
shown in Fig.4. The crack opening displacement o is a monotonically increasing function
and its increment must be non-negative. When A is positive and the crack element shows
a softening behavior, the crack element has two choices with a decreasing force: to follow
the solid line called loading path or to follow the dashed line called unloading path in Fig.4.
The problem is to find a for a given displacement . @ is assumed to be monotonically
increasing, and hence it is not necessary to consider the unloading path in this problem.

The solution of this problem can be easily obtained from equilibrium condition:

fe—ku
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Figure 3: A model with a spring and asingle Figure 4: Behavior of crack element.
crack element.

An equivalent formulation is possible with a potential function U,
., . 1,3
U= ik(u— a)* + (fea — 5/1(1 ). (2)

The equilibrium condition is equivalent to the stationary condition:

dU )
da = 0. (3)

Two formulations are equivalent, but the variational formulation provides benefit for judg-
ment of the stability of the solution. The stability of the solution is defined by the sign of
the work done by the external system for any disturbance given to the equilibrium solution.
It can be shown that the stability of the equilibrium solution is judged by the sign of the
second derivative of the potential function U as,

dz_U > ( : stable (k> A) y
da? <0 : unstable (k< A). (4)

When A < k, the solution in Eqn.(1) is stable, and the loading path in Fig.4 is followed
with the increasing value of %. On the other hand, when A > k, the solution in Eqn.(1) is
unstable. Hence when @ is increased from 0, the crack element starts to open at @ = f./k
and the crack opening displacement increases in an unstable manner.

The potential function in Eqn.(2) can be physically interpreted as a total energy, sum of
mechanical energy and dissipated energy. The first term in the right hand side of Eqn.(2)
is the strain energy stored in the spring. If the applied force is controlled, instead of
the displacement @, the potential for the external force must be added to the mechanical
energy. The second term in the right hand side of Eqn.(2) is the energy dissipated at the
crack element. The energy is understood to be dissipated and transformed into thermal
energy.

Analysis of Cracking Localization and Ultimate Strength 1877
Modcl with Two Crack Elements

A model shown in Fig.5 consists of two crack elements with no spring. The potential
function or total energy is given as a sum of dissipated energy of two crack elements by,

U= fea— %Aaz + fi—a) — %A(ﬁ —a)?, (5)

where a and @ — a are crack opening displacement of two crack elements, respectively. The
stationary condition leads to the fundamental solution:

dU

da
The stability of this solution can be checked by taking second derivative of the potential
function U.

—A@@-22)=0—a=-a (6)

d*U >0 : stable
N A 7
da? 24 <0 : unstable (7)

When the fundamental solution is stable with A < 0, « is @/2 and the crack opening
displacements of two crack elements are equal. When the stationary solution is unstable
with A > 0, the crack opening displacement can no longer be equal.

When the fundamental solution is unstable, the “localized” solution is determined by
seeking for a minimum point of total energy under the condition that the crack opening
displacement of two crack elements are non-negative. The “localized” solution in this
problem is either o = 0 or & = @. Both of themn make the total energy U minimum within
the admissible values for a, 0 < a < @, as shown in Fig.6.

U U
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Figure 5: Model with two crack elements. Figure 6: Variation of total energy.

Model with a Spring and Two Crack Elements

Next example is a model with a spring and two crack elements shown in Fig.7. The total
energy of this system is given by,

. 1,1 ‘ .
U = fuon — 3A0% + fuay = A0 + k(i — au — a2, (8)

where « and ay are crack opening displacements of two crack elements respectively and
k is the spring constant. Stationary condition leads to
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Figure 7: Model with a spring and two crack elements.
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And the stability can be examined by the sign of eigenvalues of Hessian matrix whose
components are the second derivative of the total energy.

o*U _ —A+k k (10)
Oa; 0wy k —-A+k

The eigenvalues for this Hessian matrix are —A and —A + 2k. The eigenvalues of the
Hessian matrix are the principal curvature of the energy surface which represents the value
of the total potential energy U as a function of a’s.

Figure 8: Energy surface (2k > A >0). Figure 9: Energy surface (A > 2k).

If A < 0, the stationary solution is stable and the crack opening displacements of two crack
elements are both (f.—k@)/(A—2k). 1f2k > A > 0, the stationary solution is unstable and
the energy surface of this system is as shown in Fig.8. In this case, (o, ) = (%, 0) and
(0, L;‘—__%) make energy surface minimum in the region where the crack opening displacement
of the crack elements is non-negative. So, in the case of 2k > A > 0, only one of two crack
elements continues to open and the other crack element undergoes elastic unloading and
remains closed. If A > 2k, the stationary solution is unstable and the energy surface Is as
shown in Fig.9. In this case, the crack opens in an unstable manner when the force reaches

fC‘
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GENERAL THEORY

In this section, the findings of the previous section with simple models are generalized
to cover localization phenomena in various materials which undergo irreversible processes.
The result follows the framework presented by Nguyen (1987).

First we introduce irreversible variable o, (i = 1,- -+, N) which characterizes inelastic
behaviors of materials, such as crack opening or sliding of shear failure planes. Here a set
of scalar values (vector of finite dimension) is considered for the irreversible variable. The
theory can be extended to cover, for example, plastic deformation or damage evolution
by introducing the irreversible variables which are field quantities defined as a function of
position (vector of infinite dimension). For crack problems, the irreversible variable is a
vector whose components are the crack extension length at each crack tips.

The total energy U(ug, o), which is the sum of the mechanical potential energy U™ and

the dissipated energy UP?, is defined as a function of a reversible variable u;, (i = 1,---, M)
and the irreversible variable a;:
Uluw, o) = UM (ug, ) + UP (o). (11)

Note that Eqn.(11) is not a tensor equation. UP(a,,), for example, is a function of all
components of a,,. The mechanical potential energy is the sum of strain energy and exter-
nal potential energy, and the dissipated energy is the energy transformed from mechanical
energy to thermal energy through irreversible processes.

The fundamental solution is obtained from the stationary condition,

ou ou

T — = r = (1, - - i=(1.---.N). 2

o, 0, ga; =0 (1, M), j=(1, - N) (12)
When the reversible variable is a field variable, the first equation of Eqns.(12) becomes
variational derivative.

By solving the first equation of Eqns.(12), the reversible variable is expressed in terms of
the irreversible as u; = u;(y). Substituting it into the expression of the total energy, the
total energy is expressed as a function only of the irreversible variable as,

U* () = U™ () + UP (), U™(ap) = UM (ug(am), ). (13)

We consider cases where the loading starts in the elastic region with a; = 0. Irreversible
processces become possible when the ith generalized force o; associated with a; reaches
the generalized resistance o} where

U™ . aUP
= o = .
Oc; =t Oy

When irreversible processes are possible at more than one system, the following procedure
is necessary to judge the possibility of localization and to find the localized solution.

ag; = (14)

foid O
da;0a;
of the fundamental solution obtained from Eqns.(12). If all eigenvalues are positive, the

The sign of eigenvalues of the Hessian matrix, [ ] are investigated to check the stability
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fundamental solution is stable. Otherwise, the fundamental solution is unstable and the
localization occurs.

When the localization takes place, the solution that nature chooses is obtained so that the
total energy U*(q;) is minimized under the constraint condition,

o a; >0, i=(1,--N) (15)

T

where the summation over i is not taken. Equation (15) represents nothing but the second
law of thermodynamnics. In the next section, the theory presented in this section is applied
for the analysis of crack growth in continuum body.

FEM ANALYSIS OF CRACKING LOCALIZATION

We consider a material like concrete. For simplicity, nonlinear behaviors in compression is
ignored and elasticity is assumed. The tensile strength is 0. and the tension-softening curve
shown in Fig.10 is assumed. Crack closure in elastic unloading is ignored for simplicity.
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Figure 10: Tension softening curve Figure 11: Cracked element

For FEM analysis of crack initiation and propagation, we introduced an element with three
displacement continuities with independent displacement jumps, named cracked element,
shown in Fig.11. Along each straight line, the displacement jump is assumed to be linear.
When the maximum tensile stress reaches the tensile strength, the discontinuity is em-
bedded in the direction normal to the maximum tensile stress. After the crack initiation
condition is satisfied, the tension softening relationship shown in Fig.10 is assumed for
normal stress and normal opening displacement. Shear stress along the crack is ignored.

All degrees of freedom corresponding to the crack opening are treated as the components
of the irreversible variable, a;, while all other degrees of freedom at nodal points as u;
in the previous theory. The solution of the minimization problem is obtained by Simplex
method.

To check the performance of the cracked element an unnotched square region under tension
and bending shown in Fig.12 is analyzed. Linear displacements are prescribed along the
side boundaries. Three different meshes shown in Fig.13 are employed.
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Figure 12: Unnotched square region under tension and bending: DA/a, = 1200, E/o. =
10000.
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Figure 13: Meshes used in the analysis

Fig.14 shows the load-displacement curves when the localization judgment explained in
the previous sections is carried out. It is seen that the results do not depend much on the
meshing. The crack pattern is also insensitive to the meshing. Initially distributed cracks
tend to localize and at close to the peak load all cracks outside of the central line undergoes
elastic unloading. The central crack continues to open with the decreasing load after the
peak.

Next example is a simulation of a four-point bending test of a concrete beam. Test config-
uration is shown in Fig.15 and the mesh used in this example is shown in Fig.16. Three
types of calculation were conducted; 1) with localization judgment, 2) without localization
judgment, and 3) allowing cracking only along the single line of central elements.

Fig.17 and Fig.18 show cracking patterns at different stages of loading in the analyses
with and without localization judgment. Lines and arrows in each elements represent the
orientation and the amount of crack opening displacement increments. It is seen that the
distributed cracks are localized into a single crack when the localization judgment is carried
out, while the cracking is distributed more or less until the end of the analysis without the
localization judgment.

Fig.19 shows the associated load displacement curves for three cases. When a single crack
is assumed (case 3), the behavior is very brittle. the pre-peak nonlinearity is small and the
load decreases suddenly after the peak load is attained. When the localization judgment
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Figure 14: Flexural stress vs. applied displacement.

is not carried out (case 2), the pre-peak nonlinearity is remarkable and decrease in load
after the peak is slow. The result of analysis with the localization judgment (case 1) is
in-between the two cases.

L1 L2 L3

Figure 15: Configuration of four-point bending test: DA/o. = 2400, E/o. = 10000.

Figure 16: Mesh used in the analysis

CONCLUSION

In the present paper, a theory and analysis method for cracking localization is presented.
The problem is reduced to a minimization problem under constraint conditions. Although
only results of cracking localization in bending of beams are presented in this paper, the
proposed method can predict the shear strength of RC columns and other phenomena. The
method can be easily extended to treat propagation of shear failure planes in geological

materials.
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ment, of localization
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Figure 19: Load displacement curvs; the points indicated with a-f correspond to the crack-
ing patters in Figs.17 and 18.
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