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ABSTRACT

In this paper a review of various boundary element formulations for fracture mechanics
problems is presented. The topics include the modelling strategies, boundary integral equations
and advanced contour integral formulations for evaluation of fracture parameters (stress
intensity factors or J-integral and T-stresses) that have been developed in elastostatics,
elastodynamics, thermoelasticity and inelastic fracture problems. The boundary element method
formulation of general crack problems in terms of displacement discontinuities appears to be the
most effective among all existing formulations. The overall accuracy is dependent on the
precision of the evaluation of boundary integrals. Therefore a great attention is devoted to find
nonsingular boundary integral formulations.
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INTRODUCTION

The boundary element method (BEM) is now established in many engineering disciplines as an
alternative numerical technique to the finite element method (FEM). The attraction of BEM can
be largely attributed to the reduction in the dimensionality of the problem. On the other hand
this basic BEM behaviour brings the loss of generality in comparison with the FEM. Higher
generality is achieved at the expense of the significant approximation requirements. The loss of
partial generality of the BEM is balanced by its high accuracy of results especially for stress
concentration problems. Namely, the solution at an internal point of analysed domain is exactly
expressed through the boundary values and no discretization of domain is required. This is the
main reason why the BEM is the most accurate computational method for solution of crack
problems. Straightforward application of the ordinary (standard) boundary integral equations
(BIE) doesn’t lead to a unique formulation of a general crack problem. In order to avoid this
difficulty there are suggested various modelling strategies and integral formulations. The first
and only one systematic explanation of various strategies can be found in Cruse’s book (Cruse,
1988). He presents the Green function formulation and displacement discontinuity modelling for
general crack problems in elastostatics and elastoplasticity. The BEM formulation of general
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crack problems in terms of displacement discontinuities can be found also in the book by Balas
et al. (1989) and Sladek er a/. (1986) who deals with static, dynamic and thermal effects of
linear fracture mechanics. It is known that the overall accuracy of the BEM is largely dependent
on the precision with which various integrals are evaluated. No doubt, the evaluation of singular
integrals requires much more sensitive treatment than that of regular integrals. Therefore a
proper consideration and evaluation of singular integrals belongs to the most frequently
discussed topics in the boundary element research.

In this paper the displacement discontinuity formulation is overviewed for elastostatic,
elastodynamic and thermoelastic crack problems with using a unique regularization approach
(Tanaka et al., 1994). The singular integrals are regularized in the global coordinate system
independently of the discretization. Once the boundary unknowns are computed from the
ordinary (displacements) and derivative (traction) BIE, the first fracture parameters (stress
intensity factors or J-integral) and the second fracture parameter (T-stresses) can be evaluated.
There are given advanced contour integral formulations for their evaluation. All the above
mentioned discussion concerns the brittle fracture. Sometimes, the plastic response of the
material in the near vicinity of the crack tip cannot be omitted. Therefore, the unique boundary
integral formulation for general crack problems in elastoplasticity and thermoelastoplasticity is
discussed too. Both two- and three-dimensional problems are analysed simultaneously.

LINEAR FRACTURE MECHANICS
LElasticity

Conventional theories of fracture assume that the state of stresses and strains in the vicinity of a
crack tip is characterized by a single parameter. Under predominantly elastic conditions the
controlling parameter is the stress intensity factor (SIF), K,(a =1, II, Il mode). When yielding
is more widespread, deformation at the crack tip is characterised by either the J-integral
parameter or the crack opening displacement (COD).

Over the last forty years many methods of obtaining the SIF have been developed. For simple
geometrical configurations, or where a complex structure can be simply modelled, one can use
the reference handbook of the SIF or the analytical method. If the geometry and loading of
structure is complex, one of the numerical methods is required. These are: collocation method,
body force method, edge function method, method of lines, finite element method, boundary
element method and alternating technique. In general, the methods based on boundary elements
or finite elements are the most widely used. In this paper, we present advanced boundary
integral formulations for solution of boundary value problems with cracks.

Straightforward application of the boundary element method to crack problems leads to a
mathematical degeneration in the numerical formulation (singular matrix) if the two crack
surfaces are considered co-planar. Consider a finite body containing an internal crack. Let, Sp

represents the outer body surface, while S* and Sg,. the upper and lower crack surfaces, and V/
be the region bounded by S =Sz LS} WS, The two crack surfaces in the undeformed state
are formed by the same set of points, | V77, 17 € S2. } = {V n,n €S, } and all the differences
between S and S, are due to the opposite normal directions. The region }is assumed to be

filled in with a homogeneous, isotropic, linear elastic medium. The Somigliana identity for the
displacement is given by
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The kernels U, and Tj are the Kelvin point load solution for displacement and tractions,
repectively. It can be seen that the fundamental displacements are symmetric while the
fundamental tractions are antisymmetric with respect to the choice of the field point 77
onS} or S, .In general, we will consider the problems where the crack is loaded by equal

and opposite tractions, hence X, (1) = 7 (n)+1;(n)=0. Then, the integral representation of
displacement (1) can be rewritten as

AWy ) = (60U 01 = ) =1, (0 i (1. )}dS = [ 8y () Ty (0, )aiS, @
Sp R
where Aw; (1) = ut () —u;(n).

4

We assume the surface S}, to be smooth. Then, the limit properties of the single and double

layer potentials can be employed as y — ¢t e S2 and eq. (2) becomes

%zuk(gw: I[z,.(z;)U,k(q—g*)—-z:i(fl)'/;k(;;,g*)]ds',, —SJ Au; ()T (17,¢ HdS,  (3)
Sg or
where Zu;(n)=u(n)+u; (7).

Equation (3) has two deficiencies as a mathematical model for crack geometries. First, consider
a problem in which the outer boundary Sp is free of tractions and the only loading is applied to
the crack surface. Since any set of equal and opposite boundary tractions gives the same
boundary integral equation (BIE), the formulation given by eq. (3) is non-unique. Second, while
a single surface .S; is now being treated, two variables are unknown: Aw; and Zu;. Thus, the
system of equations (3) and BIE if y — {B € Sy underdetermines the mathematical basis for a

solution of the unknowns on Sz and the unknowns on S}..Zu; and Auw;. In literature there are
familiar four ways how to overcome these difficulties: a) multi-domain formulation b) Green’s
function technique c) dual boundary integral formulation and d) displacement discontinuity
technique. In the first method (Blandford er al., 1981) the cracked body is divided into two
regions which were joined together such that equilibrium of tractions and compability of
displacements were enforced. On both surfaces, the standard BIEs are written. The main
disadvantage of this method is that the artifficial cut surfaces increase substantially the number
of unknowns. Moreover, in this case of crack growth problems, remeshing on cut surfaces is
required.

In the second method, the Green’s function can be found for two dimensional flat crack
problems (Cruse, 1988). The analytical solution corresponding to the flat crack in an infinite
plane with prescribed traction vectors on crack surfaces is superimposed with the Kelvin
solution to satisfy stress-free condition on crack surfaces. In such an approach the crack surface
need not to be discretized. However, this approach is restricted to two-dimensional straight
crack configurations.

The dual boundary element method (DBEM) was developed by Portela er al. (1992). The
DBEM overcomes the problem of the degeneration of the ordinary BIE on the crack surfaces by
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using two different equations for collocation points on opposite crack faces. For elastic
problems, it uses the displacement equation for points on one crack surface and the traction
equation for points on the other. Thus, full information (displacements on both crack faces) is
received on the crack surface by solving these independent BIE.

Recall that the solution at any point of a cracked body can be expressed via integral
representations in terms of the boundary displacements and tractions on Sp, and the
displacement discontinuities on the crack (Sladek er al., 1986; Balas er al., 1989). Thus, the
relevant unknowns at a BEM formulation for any crack problem are the densities of the
displacement discontinuities on the crack and the unprescribed boundary densities on the outer
boundary Sp. Hence, the use of the displacement discontinuity approach results in a substantial
reduction of the size of discretized BIE which are to be solved for boundary unknowns. The set
of totally regularized boundary integral equations consists of the displacement BIE, applied on
the outer boundary S,

SI (14,0 =10, (¢ B T (. ¢ Bty + Tty (o) T (7.¢ P)diS =
B S
= SI LUy (= ¢ P)ds,, (4)

and the traction BIE (Sladek er a/., 1993a,b; Sladek er al., 1992) applied on S,

[ anu,, - L. O, 4 ] “\B SR
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The tensor B, can be expressed by the nonsingular integrals on S7,. This definition and the
expressions of all kernel are presented by Sladek er al., (1993a,b). Symbol #(7) in the
differential operator Dk denotes the unit tangent vector to the boundary § at the point 7. In
three-dimensional problems, p is the other orthogonal unit tangent vector, while in two
dimensions, p; =63 and 8(.)/p =0.

It is well known that the standard BEM formulations include singular integrals. The leading
singularities of the integral kernels are given as
Ui ~ 2 (Inr in two dimensions) , T, Dyji s Thjir: = pi=d

where d is the dimensionality of the problem. In view of this asymptotic behaviour of the
integral kernels as well as the position of collocation points ¢ * on smooth S7. one can see that
all the terms are bounded at any of the BIE given by eqgs. (4) and (5) provided that the
displacements are Holder continuous on Sy (u; € %9y and Au; € C1® on .. The leading
singularity of the present traction BIE is the strong singularity. Some authors object to the
application of the traction BIE with strongly singular kernels to crack problems owing to the

r12 singularity of tangential derivatives near the crack front. Since the collocation points are
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away from the crack front, the kernel is finite on the crack front and the weak singularity P12

can be easily removed by a polynomial transformation. If the traction BIE with hypersingular
kernels (= r‘d) are employed, the use of C'-continuos elements is necesssary for
approximation of displacements (or displacement discontinuities). The present set of the BIE
makes us possible to use only standard C’-continuos conforming elements, if the latter are
applied also to the approximation of densities of crack dislocations (i.e., tangent derivatives of
the displacement discontinuities). In such a case, however, the set of the BIE is to be
supplemented with a tangent derivative BIE resulting from the regularized integral
representation of the displacement gradients (Tanaka et al., 1994). The compatibility of the
approximation of displacement discontinuities by C" conforming elements with the
approximation of crack dislocations can be satisfied at nodal points in the least-squares sense
(Polch et al., 1987; Bonnet, 1989).

In linear fracture mechanics, it is well known the relationship between the J-integral and the
stress intensity factors. In order to obtain stress intensity factors from a mixed mode case, the J-
integral, stresses and displacement gradients are decomposed into symmetric and antisymmetric
components (Aliabadi and Rooke, 1991). The integration path Iy has to be symmetric with
respect to the crack plane. The particular stress intensity factors can be computed also from the
integral representation based on the use of the Betti’s reciprocity theorem and the Bueckner’s
singular fields (Sladek and Sladek, 1993b). We can write

Ky = (Ul =,z )ar (6)
Ty

where U,~1 and U,-H represent Bueckner’s singular displacement fields as a result of two equal,

opposite normal and sliding forces at the crack tip, respectively. The traction vectors 7,?"" are
asociated with these displacements. Note that I'g can be chosen as the outer boundary Sp of
cracked body.

Now, we present a computational method for evaluation of the T-stresses (Rice, 1974).
Consider two independent equilibrium states(a,qu ,u,“’ ,g,-j’) and (a,j‘-‘,u,”,s,f) Then, one can
define a new path independent integral, the so called mutual M-integral, by using the J-integrals
for particular states (A), (B), and their superposition (A+B) by M = JAHE _ gAY JB)
The expression for the M-integral can be rearranged as follows (Kfouri, 1986; Sladek and
Sladek, 1996a) ’

M= J.(or,-}'f'g,;jnl - l,f4 u,-l?l —tiljvl,ff’])dl" 7
o
Let the first state (A) correspond to the analysed boundary value problem with unknown T-
stress and the second state (B) be an auxiliary solution. Due to the path independence of
individual J-integrals the M-integral is path independent too. Then, the integration contour can
be chosen arbitrarily, say as a circle T, which is shrunk to zero radius. If the auxiliary fields are
selected as solution for the problem of a semiinfinite crack loaded by a point force f applied to
the crack tip in the direction parallel to the plane of a crack, it is possible to find relationship
between the M-integral and the T-stress (Kfouri, 1986)
-
M=~ :i_r)no 1{ alu}njelTldl" ==

f (3
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Thf: analytical solution of auxiliary fields is given in (Kfouri, 1986; Sladek and Sladek, 1996a).
It is seen that the mutual M-integral provides sufficient information for determining the T-
stresses.

Elastodynamics

Dynamic fracture mechanics can be broadly classified into i) impact fracture mechanics and i)
fast fracture mechanics. In impact fracture mechanics stationary cracks subjected to dynamic
loads are analysed. The aim of the fas! fracture mechanics is to analyse the growth, arrest and
branching of moving cracks. Due to the highly transient features in dynamic fracture analytical
solutions in dynamic fracture mechanics are more limited than in elasticity. Structures with
arbitrary shape and time-dependent boundary conditions need to be analysed by numerical
methods. The boundary element method has been successfully applied to stationary and growing
cracks in infinite and finite domains (Sladek and Sladek, 1986, 1987; Nishimura ef al., 1988,
Hirose and Achenbach, 1989; Dominguez and Gallego, 1992; Fedelinski e al., 1995). The BEM
solutions in elastodynamics are usually obtained by using one of the following approaches: the
time-domain method, combination with the Laplace or Fourier transforms, and the dual
reciprocity method. Computational modelling of dynamic crack propagation is described by
Nishioka (1994) in his review paper. Stationary element and moving element procedures for
finite and boundary element methods are analysed separately.

Similar to elastostatics, the general crack problem in finite bodies can be uniquely formulated
using the displacement equations on the outer boundary Sz and the traction equations on one of

the crack surfaces, S... The displacement equation for the Laplace transforms can be written in
a nonsingular form (Balas et a/., 1989) as

SI [, ) - (B | T (1.6 B NS, +ﬁ,-(4’3,p>sfl7‘;k(rz,q’*,p)— 7% (7. ¢ B)Ms,, -

-SI 7,00, )T (- ¢ B pyds, + 1 am (. p)T (. P, p)dS, =V (&P, p) )
B S

and the nonsingular traction equation becomes (Sladek and Sladek, 1996b)

raAﬁm + + aAﬁm + + _] + + +
|72 ¢ P (§7) + o (&7 Pk (&) (6 VB (&7, 67) +

+nj(¢+)s{ [bkAﬁ,.(n,p)—,&A_An,.u*,p)]T,ﬁk(n— T p)dS, +

cr

+ B At (o, pyn () Ty (.67, ) = T (0, 6 )MAS, +
S ’

Dcr

+n,-<4*>sf [0 2Dy 1. ¢ o)+ PP E (. )+ Ty (0.8 YD (. p)| IS, +
B

2 o _ _

+ 0?1 A0, P)E (1.6, p)S, = W (7 p) (10)
where p is the Laplace parameter and Laplace transforms are denoted by an overbar. The
integral kernels with the superscript s correspond to the static solutions, and the right hand sides
of egs. (9) and (10) represent the contribution from the body forces and initial conditions.

The BIE for the Laplace transforms are solved numerically by the same scheme as that in the
elastostatic case. In order to obtain the time-dependent unique formulation for a general crack
problem the inverse Laplace transformation of displacement and traction equations (9), (10) has
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to be performed. In such an inversion, the algebraic products of Laplace transforms are
converted to the convolution products. The dual reciprocity formulation can be derived from a
reciprocal relation between an elastostatic fundamental solution state and the actual
elastodynamic state in which the inertia term is treated approximately as body forces. The
domain integral of the inertia term is converted into boundary ones and an ordinary differential
equation is received for the unknown time-dependent expanding coefficients. This equation is of
the second order and it is an alternative of the FEM equilibrium equation in elastodynamics.

For structures subjected to dynamic loads, the dynamic stress intensity factors can be computed
from theJ -integral which represents an energy release rate for a stationary crack and has the
physical meaning of a crack driving force. The J -integral is defined (Kishimoto et al., 1980a) as
J= (W -t Jar + tim § piiyu; a2 (1)
To+T, 2000,

where Q- Q, is the domain enclosed by Tg + T, — T’ .
In the Laplace transform domain formulation, one can define a path independent J-integral
which is related to the Laplace transforms of the SIFs (K; and K ;) analogically as in the static
case. The individual stress intensity factors can be obtained from the integral representations
which utilize the Bueckner’s singular fields

Ky=1

1)

for N= I, II fracture mode.

(bUY —u,7N)ar — tim | pii, U d2 (12)
e-00-Q,

The spatial distribution of stresses at a crack tip vicinity of a stationary crack subjected to a
dynamic load is the same as in the case of a static load (Sih er al., 1972). Therefore, the T-
stresses in elastodynamic crack analysis are as important as in the static case. The mutual M-
integral is given by

M= J’(a,»}le,fnl —I,f"uf] ~l,-Bu,f’4|)dF+ lim J pii,‘"‘u,-l?ldﬂ (13)
To £=00-Q,

Note that it is impossible to convert the domain integral into a contour one neither in the

Laplace transform domain. It can be seen that the use of the auxiliary fields employed in

elastostatics yields the same relatioship between the value of the M-integral and T-stresses as in

the elastostatic case. The only difference is that now both the M-integral and T-stresses coupled

by eq. (8) are time-dependent now.

Thermoelasticity

The general theory of thermoelasticity includes such branches as theory of thermal stresses,
quasi-static coupled thermoelasticity, quasi-static uncoupled thermoelasticity and stationary
thermoelasticity. For all special classes of thermoelasticity problems one can find advanced pure
boundary formulations (Balas ef al., 1989). Usually, the coupling coefficient has a small
influence on values of analysed quantities in a practice. Moreover, we don’t want to complicate
the analysis by taking into account the inertia term in the governing displacement equation,
which has been treated in the previous section, elastodynamics. Thus, we are interested in
stationary and quasi-static uncoupled thermoelasticity. In both the above mentioned
thermoelastic problems the stress field equations are identical to those for isothermal problems
with applied body forces. Since the presence of heat flow produces no additional singularities,
according to Sih (1962) the local character of thermal stresses is of the same nature as for
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problems with mechanical stresses. Thus the stress intensity factor (or alternatively the energy
realese rate) is the only fracture charactzristic in conventional fracture mechanics. In order to
evaluate the SIF for a crack problem, it & sufficient to know the solution only on the boundary
or at small number of internal points usully lying far from the crack tip. In view of this fact, the
boundary element method appears to be very convenient for solution of these problems. In
literature one can find a lot of papers devoted to thermoelastic crack analysis by the BEM (Balas
et al., 1989; Sladek and Sladek, 1984, 1987b, 1992; Sladek et al., 1986; Tanaka ef al., 1984,
Raveendra and Banerjee, 1992; Raveend-a ef al., 1993; Lee and Cho 1990, Prasad et al., 1994).
The aim of this section is to give a unique formulation of general crack problems. We suppose
the crack to be loaded by equal and opposite tractions on both crack surfaces ( Zt; =0) .
Moreover, neither heat source nor sdnk are supposed to be between the crack faces
Sq(n,p)=q (n,p)+q (1,p)=0, where g denotes the Laplace transform of the heat flux
for a non-stationary state. The Laplace transform is used to elliminate the time variable. The
time-domain formulation of the heat equation by the BEM is known too (Balas er al., 1989;
Brebbia ef al., 1984; Sladek and Sladek, 1990, 1992; Banerjee, 1994). In uncoupled theories,
thermal fields are not influenced with nechanical ones. On the other hand displacements and
stresses are influenced with thermal fields. Therefore, firstly in such theories it is necessary to
analyse thermal fields (heat equation). Similarly to elastostatics or elastodynamics, if we take the
limit of an internal point to a point lying on the crack surface in the standard representation of
temperature the non-unique formulation is obtained for a general crack problem due to the
existence of the sum of temperatures cn both surfaces. Then, we can write the ordinary BIE
(temperature BIE) on the outer surface Sy and the derivative BIE (flux BIE) on the crack

surface S/ to give the unique formulaton. Assuming S, to be smooth and Zg =0, we may
write the set of BIE as (Balas er al., 1989; Tanaka ef al., 1994)

k8 (¢".p)J [F.c % p=F .¢")]dS, +x0 ] (6. -6 pIF@.¢7 pXsS, -

- xosf g0 T(n - ¢B.prds, + xos[ AT (. pYF(1.¢ % p)dS, =7 (¢ .p) (14)
B cr

and

(B_AQ + + 0191 + +1 WM *
L& (&7 pr(&)+ P & pp& )j'u(§ YM (&) +

+Kon; (¢7) | g;»,-[lj‘.AQ_(n,p)—jkA9_(4+,1))]ff(77 -¢hyds, +
s
+ w,-(q*)g{ (.- ¢*.p - T = ¢ legiDe +m; (0¥ 1 - ctple
©AF (1., p)dS, + Ko, (¢ ") ] ([, 0 ®0r-¢* P+ T = €D o) -
B

g )T, (- ¢ oS, =a(¢" . p) = UL, p) (15)
Recall, the leading singularities of the integral kernels are given as

5

s T s -d
AT T =0

~r24 T.75 =~ r* ¢ (Inrin two dimensions)

| €

Similar to the case of elastostatics, the collocation point ¢ * is out of the crack front. It can be
seen that both the BIE given by eqs. (4) and (15) are nonsingular. The sufficient conditions for
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the existence of such regularized BIE are (Tanaka et al, 1994): 8 e c% on Sp and
AG e C'® on S}.. In full analogy with the displacement discontinuities, the required
smoothness for the temperature discontinuities can be achieved either by using C'-continuous
elements for approximation of A or C° conforming elements for both A6 and its tangent
derivatives with satisfying the compability at nodal points in the least-squares sense. The flux

BIE can be reconsidered also in the form with hypersingular kernels (= rd ), but then c-
elements are necessary for approximation of A@ on S}..

Having known the relevant thermal boundary densities, one can compute the mechanical
unknowns on Sz and displacement discontinuities on S} by solving the set of the displacement

BIE and tractin BIE collocated on Sz and S}, respectively. As compared with the BIE

employed in elastostatics, there are some new integrals of thermal terms on the r.h.s. (Sladek
and Sladek, 1996b).

Wilson and Yu (1979) showed that the Rice’s J-integral over a closed path is not zero in
thermoelasticity. Therefore, Kishimoto ef al. (1980b) modified the J-integral by the new path-

independent .}-integral
J=1 (W”nl —/,u,‘l)dl‘ +lim | 0,a6,dQ 16)
I+, £-200-0, ’
A direct evaluation of the SIFs in stationary thermoelasticity by boundary integral
representations has been proposed by the present authors (Sladek and Sladek, 1993b). Bueckner
singular fields are utilized in the reciprocity theorem to derive such integral representations
N N

) H
—H“qurJrzy(sN, | =T amn
i

(
Ky :rj(in,N —u, TN )dT +y JLe
0

To ch

Because the local character of thermal stresses at a crack tip vicinity is the same as in the
problems with mechanical stresses, the reason for introduction of the T-stress as the second
fracture parameter is the same as in elastostatics. The mutual M-integral

(a,fg,fn, s, —:Fu,:f,)dn lim | acfo;dQ (18)

n

M=

Ty e-00-Q,
provides sufficient information for determination of T-stresses because the following relation
between the M-integral and T-stresses is valid (Sladek and Sladek, 1996c¢)

1-v2

e Tf +abyf(1+ V) (19)
where 6, is the temperature at the crack tip. All the mechanical and thermal fields occuring in
the integral representations of the stress intensity factors, the M-integral and J-integral are
obtained by the BEM. These fields are computed far away from the crack tip, so the accuracy of
presented methods is sufficiently high.

INELASTIC FRACTURE MECHANICS
Elastoplasticity

Plasticity is defined as the property which enables a material to be deformed continuously and
permanently without rupture during the application of stresses that exceed the elastic limit of the
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material. Thus, residual strains are expected to occur on removal of the load and the final
deformation depends not only on the final stresses but also on the path-stress history from the
beginning of yield. All these requirements put on a computational model are satisfied in this
paper by the incremental theory of plasticity which provides the most general theory for inelastic
deformations of a wide range of materials. Since material non-linearities may be introduced into
an elastic analysis method as a set of initial strains, stresses or body forces for each increment in
the same way that thermal looading, the boundary element method can be developed for

inelastic analysis (Banerjee and Butterfield, 1981; Brebbia er al., 1984; Balas et al., 1989,
Banerjee, 1994).

In elasticity, it is shown that standard boundary integral equations don’t lead to a unique
formulation of a general crack problem. One of the first attempts in applying BEM formulations
to fracture mechanics was made by Mukherjee and co-authors (1982) by using Green’s
functions for ellipses to introduce crack. All three ways, multi-domain formulation (Sladek and
Sladek, 1995a), Green’s function technique (Cruse and Polch, 1986), displacement discontinuity
method (Balas er al., 1989; Sladek and Sladek, 1993a) or dual boundary integral formulation
(Leitao et al., 1995), known from elasticity have be extended into elastoplasticity too. Since the
governing equations in the rate form and hence also the boundary integral equations are formally
the same for elastic case expect the additional domain integral with initial stress rates (or strain),
we don’t present a complete unique BEM formulation for crack problems now. In eqs. (4) it is
necessary to change all the state variables by their increments and add to the right hand side the
domain integral

68 (U (x = ¢ B)ydv,
Vp

where 1/, is a domain with non-zero plastic stress rates c'r,f ;

The traction equation (5) is to be supplemented on its right hand side by the following domain
integral (Balas e al., 1989, Sladek and Sladek, 1993a)

- "-P-J Ok (I (& )E i (x = $ )V, — gy (T (6T)

where the free term is a function of plastic stress rates and its explicit expression can be found in
(Banerjee and Butterfield, 1981; Brebbia er a/., 1984; Balas er al., 1989; Banerjee, 1994). The
volume integral over }/, domain exists in the CPV sense. According to (Dallner and Kuhn,

1993; Sladek and Sladek, 1995a) it can be transformed into a regular domain and contour
integrals. The integration path of the contour integral is identical with the boundary of the
assumed plastic zone V), .

In elastoplastic fracture mechanics the leading terms of stress and deformation field expansions
are controlled by the J-integral according to the HRR-theory (Hutchinson, 1968; Rice and
Rosengren, 1968). Similarly to an elastic case the dominance of the leading-order term is limited
in elastoplasticity too. To obtain a more realistic asymptotic expansion of stresses, it is
necessary to introduce the additional terms. Recently, Yang ef al. (1993) have introduced three
term asymptotic expansion formulation. The BEM, as a very accurate method, can be used to
quantification of conditions under which the HRR solution reasonably represents realistic
results.
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Thermoelastoplasticity

The BEM is potentially very attractive for solution thermoelastoplastic problems due to its
ability to produce accurate solutions in elastic cases. The earliest BEM formulations for
thermoelastoplastic problems were due to Mukherjee (1977) and Bui (1978). Their formulations
also include the domain integral of temperature gradients and so the discretization is required
within the whole domain. Recently, Chopra and Dargush (1994) have presented the boundary
formulation. The only domain-type integral in these formulations is the integral of initial plastic
stresses. Its contribution is considered iteratively. During each iterative step the formulation has
a pure boundary character.

The application of the BEM to thermoelastoplastic crack problems doesn’t appear in literature
frequently due to its complexity. Up to date only one paper (Sladek and Sladek, 1995b) has
been devoted to unique formulation of a general crack problem. The displacement discontinuity
method is used there. Because the uncoupled theory is considered, it is possible to analyse
thermal and mechanical fields separately. First, the thermal problem is resolved, because this
solution is not influenced by the mechanical fields. Nonlinear behaviour is assumed only for
those material parameters which affect mechanical variables but don’t thermal ones. Therefore,
the ordinary and derivative BIE for thermal unknowns in thermoelastoplastic problem are the
same as in the elastic case (see eqs. (14) and (15)). The only change consists in the replacement
of state variables by their increments corresponding to the increments of thermal loading. The
displacement and traction equations, which are valid for elastic case, have to be supplemented
by the domain integrals involving plastic stress rates. These integrals, however, are identical
with those presented in elastoplasticity.

The boundary element method seems to be the most accurate computational method for crack
analysis and can be successfully utilized also in the determination of path independent J-integral
and the additional fracture parameters in higher-order asymptotic theories. The present authors
(Sladek and Sladek, 1996d) used the BEM for computation of the second amplitude parameters
in the three term asymptotic theory.
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