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ABSTRACT

Vor non-self-similar fracture simulation, one of the present author previously proposed the
concept of mixed-phase simulation. In this paper, the mixed-phase simulation with the fracture-
path prediction mode is carried out for dynamically curving crack propagation occurred in a
fracture test. The dynamic J integral is used for the evaluation of various mixed-mode fracture
parameters for dynamically curving cracks. Simulated fracture paths are compared with the
¢xperimentally obtained actual one. Three propagation-direction criteria are postulated in the
mixed-phase simulation. Among the postulated criteria, the local symmetry (K[[=0) criterion
best predicts the actual fractured path.
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INTRODUCTION

{>ynamic fracture mechanics has mainly treated self-similar dynamic crack propagation.
However, we often observe non-self-similar dynamic crack propagation such as dynamic crack
curving and dynamic crack branching. So far, non-self-similar dynamic fracture mechanics has
not been well established. Especially the simulation methodology for such non-self-similar crack
propagation involves many inherent difficulties.

To accurately simulate fast curving fracture, Nishioka, Takemoto and Murakami (1989)
developed a moving finite element method together with the concept of element-controlling
plane. Using the moving finite element method. Nishioka, Murakami and Takemoto (1990)
varried out the generation-phase simulation of fast curving fracture tests (Nishioka et al, 1990).

T'o characterize the fast curving fracture, we need two criteria, viz., a crack-propagation criterion
and a propagation-direction criterion. Therefore, the application phase simulation should be
conducted using postulated or predetermined these two criteria. However, crack-propagation
criteria have several critical unsolved problems such as specimen-geometry dependence and

~ ¢mck-acceleration effects (Takahashi and Arakawa, 1987).

1o verify each criterion separately, Nishioka (1996b) has proposed the concept of "mixed phase
simulation" together with "fracture-path prediction mode" and "crack-growth prediction mode .
in the fracture-path prediction mode, the crack is forced to extend according to the experimentally
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recorded history of crack length or crack velocity, and a postulated propagation-direction
criterion predicts the fracture path.

This paper presents important simulation techniques of the moving finite element method for the
mixed-phase/fracture-path prediction mode simulation. The fracture path in the fast curving
fracture test is predicted using several vell-known propagation-direction criteria.

TYPES OF NUMERICAL SIMULATION FOR NON-SELF-SIMILAR
FRACTURE PHENOMENA

For non-self-similar fracture such as curving crack growth, three types of numerical simulation
can be considered. as proposed by Nishioka (1996b). First, the generation phase simulation can
be conducted similarly with the genertion phase simulation (Kanninen, 1978) for self-similar
dynamic fracture, except additionally using experimental data on the curved fracture-path history
(see Fig.1(a)).

On the other hand, in the application phase simulation for curving crack growth, two criteria
must be postulated or predetermined as shown in Fig.1(b). One of them is the crack-propagation
criterion that is almost same with the one used in the application phase simulation (Kanninen,
1978) for self-similar fracture. However. the crack-propagation criterion for the curving crack
growth may involve mixed-mode {racture parameters. Thus, it should be described by a fracture
parameter taking into account mixed-mode conditions, such as the dynamic J integral (Nishioka
and Atluri. 1983). The other one is a criterion for predicting the direction of crack propagation
(propagation-direction criterion or growth-direction criterion).

However, the application phase simulations of curving crack growth have not been fully, due to
several critical difficulties in those simulations. For instance, in dynamic brittle fracture, the
crack-propagation criterion described by fracture-toughness versus crack-velocity relation itself
has the unsolved problems. Furthermore. the crack-propagation criteria may also be influenced
by the geometry of fracture specimen.

To verify only the propagation-direction criterion such as the maximum energy release rate
criterion, Nishioka (1996b) proposed "mixed phase simulation" as depicted in Fig.1. Regarding
the crack-propagation history. the same experimental data for the a versus t relation used in the
generation phase simulation can be used in the mixed-phase simulation. Thus, the increment of
crack propagation is prescribed for the given time-step sizes in the numerical simulation. Then
the propagation-direction criterion predicts the direction of fracture path in each time step.
Simulated final fracture path will be compared with the experimentally obtained actual one. This
mode of the mixed-phase simulation may be called " 'fracture-path prediction mode"(see Fig.1(c)-
[RRAN

& o) a
L g ol :Propagation-Direction
i Criterion
I | t G R e
Crack-Propagation History  Fracture-Path History Crack-Propagation History

@) G tion Ph Sirailaiorn (i) Fracture-Path Prediction Mode
a) Generation Phase Simula .

c

N " ‘PropagationDirection’

.. Criterion____ :

(i) Crack-Growth Prediction Mode
(¢) Mixed-Phase Simulation
F1g.1 Mixed-phase simulation {or non-scli sinuiar dy nannc tracture

(b) Application Phase Simulation

Mixed-Phase Simulation with Fracture-Path Prediction Mode 2065

Another mode of the mixed-phase simulation can be considered as depicted in Fig.1(c)-(i1), i.e.,
" rack-growth prediction mode". In this mode, the experimental data for the fracture-path
history and the crack-propagation criterion are used simultaneously. In this case, the crack is
forced to propagate along the actual fracture path during the numerical simulation. Simulated
crack-propagation history should agree with the experimentally obtained actual one if the
postulated crack-propagation criterion is valid.

MOVING FINITE ELEMENT METHOD FOR DYNAMICALLY CURVING
(CRACK PROPAGATION

To simulate dynamic crack curving, the curved crack path(s) should be modeled accurately by
the finite element mesh pattern. Moreover, it is difficult to move a group of isoparametric
clements around the crack-tip, in accordance with the curved fracture path. To overcome these
difficulties, Nishioka, Takemoto and Murakami (1989) developed an automatic element-control
;uel}‘\zod using a mapping technique. The concept of element-controlling plane is illustrated in
1g.2.

I'he procedures of the mesh movement and readjustment are controlled in the element-controlling
plane. The mesh pattern in the real plane is created by the mapping from the element-controlling
plane through a mapping function. The mapping function for the entire region consists of several
:,ugrangian elements. The shape functions of Lagrangian element (see Fig.3) can be constructed
Wy
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in which i denotes the coordinate value of the k-th node in the T direction.

Any point Py(x,,y,) on the virtual element-controlling plane is mapped onto a point Pi(X..y) on
the real plane according to the following relation:
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where C,, A, are the natural coordinates of the point P\(x,.yy) in the Lagrangian element, and
(Xrkj» Yikj) are the nodal coordinates of the Lagrangian element. As shown in Fig.2, the
Lagrangian-element mapping function can be obtained by using only the coordinates of the crack
path and the external boundaries.

In the moving element procedure, the mesh pattern for the elements near the crack-tip translates
along the curved crack path in each time step for which crack growth occurs as illustrated in
Fig.4. Thus, the crack-tip always remains almost at the center of the moving elements
throughout the simulation. The regular isoparametric elements surrounding the moving elements
are continuously distorted. To simulate a large amount of crack propagation, the mesh pattern
around the moving elements is periodiclly readjusted, as is also shown in Fig.4.

THE DYNAMIC J INTEGRAL FOR DYNAMICALLY CURVING CRACKS

For dynamic cracks, Nishioka and Atluni
(1983) derived the dynamic J integral (J')
which has the following salient features:

(i) It physically represents the dynamic energy
releaserate;

(ii) It has the property of the path-independent
integral, which gives a unique value for an
arbitrary integral path surrounding the X
crack tip: 5

(iii) It can be related to the stress intensity
factors by arbitrarily shrinking theintegral
path to the crack tip.

For a crack propagating at an angle 6¢

measured from the global X axis (see Fig.5),

the global components of dynamic J integral Jy

were derived by Nishioka and Atluri (1983) in Fig.5 lntegral paths and coordinate systems

a path-independent form: for a dynamically propagating crack
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where W and K are the strain and Kiretic energy densities, respectively, and ( ).x = d( ) IX.
Physically, the near-tip region V. cin be considered as the process zone in which micro-
processes associated with fracture occur.
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fecent theoretical studies (Nishioka, 1989, Van Vroonheven, 1992, and Nishioka, 1994) lead to

it following conclusions on the dynamic J integral.

11 I'he dynamic J integral component J"is "theoretically” invariant with respect to the shape of
an infinitesimal process zone.

21 1'he dynamic J integral component J':” is "practically" invariant with respect to the shape of an
infinitesimal process zone.

i 1) The other path-independent integrals that do not physically represent the dynamic energy
;elease rate, are not invariant with respect to the shape of an infinitesimal process zone.

1 he above features of the dynamic J integral including its finiteness are very important for the

iheory and the numerical analyses in dynamic fracture mechanics.

fn most numerical analyses, far-field integrals are usually used to evaluate the values of the
dyvnamic Jintegral. In this case it is convenient to consider the following expression taking the

it of V=0 (I,—0):

U I [(W"’K)nk'tlul,k]ds"'f [Piinul‘k'Pﬂnflu,k]dV- (6)
r+rc

\)

ihe crack-axis components of the dynamic J integral can be expressed by the following
¢oordinate transformation:

1 = oy (B0) Ty )

When the kinetic energy and the inertia forces in a cracked solid vanish, the dynamic J integral
seduces to the static J integral (Rice, 1968, Budiansky and Rice, 1973). Thus, the dynamic J
integral includes the static J integral as a special case.

I'he dynamic J integral can be related to the instantaneous stress intensity factors for the
¢lastodynamically propagating crack with velocity C, asin (Nishioka and Atluri. 1983):

0 ] o) 5
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1= A———KIL(C) 1Ky (8)

where (Ay,...,A) are functions of the crack velocity.

Various procedures for determining mixed-mode dynamic stress-intensity factors from the
dynamic J integral values were summarized in (Nishioka, 1996a). The typical procedures are (i)
direct method, (ii) mode decomposition method, (iii) component separation method.

10 overcome the difficulties in the direct method and in the mode decomposition method, the
component separation method was proposed by Nishioka, Murakami and Takemoto (1990). If
non singular regular elements are used around the crack tip under a mixed-mode condition, the

value of Jz() cannot be obtained accurately owing to the finiteness of the energy densities in the

repular elements. However, the J" component is not affected by the modeling of the crack tip.
and can be evaluated accurately (Nishioka, Murakami and Takemoto, 1990), even by the global

components of the dynamic J integral. J'k (k=1. 2). The formulae of the component separation
method can be expressed by

_ 2 v()fig 5 \I 2_ 2] ﬁz(_l. costo J‘,smﬁn/f 5 S \| ’
K'"f"{ YA (o7pas onp ) ‘6'< bt ) A lozparonpl))l



2068 Nishioka et al.

_ |2 J.()ﬁ S 5 \ 1_ 2up (Jy CUS("(I+J‘:‘_NIHU(|% 5 S
Ku=om P (o7 povors ~on{ 200 adoigaron)l 1O

i

in which &, and 8y, are the mode | and mode Il crack-opening displacements near the crack tip.

MIXED-PHASE SIMULATION WITH FRACTURE-PATH PREDICTION MODE

Figure 6 shows a typical fractured specimen obtained in fast curving fracture experiments
(Nishioka et al, 1990). Figure 7 shows the history of fast curving crack propagation that was
measured by a high-speed camera in the experiment. In the figure, ax and ay denote the global
coordinates of the instantaneous crack-tip position. The maximum crack velocity was

approximately 300 m/sec. The crack attested at t=1264 psec.

The results of the generation-phase simulations of fast curving fracture experiments have been
already reported by Nishioka et al (1991) and Nishioka (1995). For the sake of comparison, the
K, and K values obtained by the generation phase simulation are shown in Fig.8.

Next, the mixed-phase simulation with the fracture-path prediction mode for the fast curving
fracture experiment is explained. Figure 9 schematically explains the numerical procedures for
the path-prediction mode of the mixed-phase simulation. In each time step, the crack is advanced
by the small increment according with the experimental history (crack-length versus time curve).
The fracture path is predicted as follows: At a generic time step n, as the first trial, the crack is
advanced in the tangential directionat the crack tip of the step n-1. If an employed propagation-
direction criterion. for example the maximum K criterion, is satisfied at the attempted crack tip
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ication, the crack is advanced in this direction. If not, K] values are evaluated at the other two
crack tipsin attempted directions as shown in Fig.9. Then the fracture direction 8¢ that exactly
-atisfies the employed propagation-direction criterion is determined by the K| versus 6 curve.

|

b a4

i (b) nal mesh pattern
Fig.10 Automatic mesh control Fig. 11 Moving finite element mesh patterns

| o accommodate the dynamically curving crack and the moving finite elements, the mesh pattern
for I.agrange mapping function is continuously varied, as schematically illustrated in Fig.10.
I'ipures 11(a) and (b) show the initial mesh pattern (t=0) and the final mesh pattern at the time of
crack arrest, respectively. During the simulation, the web-like mesh moves in a similar manner
cyplained in Fig.4.

I'he global components of the dynamic J integral J'| and J'> were evaluated along the circular
paths in the web-like mesh (see Fig.11). Excellent path independence of the dynamic J integral
vilues were obtained throughout the simulations. Then these dynamic J integral values were

converted to the dynamic stress intensity factors by using the component separation method (see
cqns (9) and (10)).

All simulated fracture paths are compared with the experimental one in Fig.12. As long as the
criteria tested here, the local symmetry criterion (K[|=0 criterion) predicts the closest fracture
path to the experimental one.

I'he numerical results of the K and Ky values obtained by the mixed-phase simulations are
<hown in Figs. ! 3ta)-(¢). A< seen from the figures. in each case, K| decreases rapidly after the
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crack extension. After certain crack extension, the crack propagates with a nearly constant K|
value. In all cases, the values of Ky are relatively small compared with those of K| even in the
cases of the Gmax and Kjmax criteria although those criteria predict somewhat deviated fracture

paths as indicated in Fig.12.

CONCLUDING REMARKS

The concept of the mixed-phase/fracture-path prediction mode simulation was presented together
with the simulation results for the fast curving fracture test. Among the propagation-direction
criteria implemented in the mixed-phase simulation, the local symmetry criterion best predicted

the actual fractured path.
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