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ABSTRACT

A procedure for approximate solution of the problems of stressed state and limit equi-
librium of piecewise-homogeneous shells with non-through (surface or inner) cracks is
proposed. It takes into account plastic strain zones in the vicinity of cracks. The essence
of this procedure lies in the fact that, using an analogue of the Leonov-Panasyuk-Dugdale
model, the three-dimensional problem is reduced to a two-dimensional one. The latter
problem is reduced to a system of singular integral equations with unknown limits of in-
tegration and discontinuous right-hand terms. An algorithm for the numerical solution of
such systems (in conjunction with conditions of plasticity and finiteness of forces and mo-
memts in the vicinity of a crack) is presented. The dependence of the crack opening and
the size of plastic zone on loading, geometric and physico-mechanical parameters is inves-
tigated for closed piecewise-homogeneous cylindrical shells built up from two dissimilar
semi-infinite shells with a surface crack in one of them.
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INTRODUCTION

The importance of investigating the stress distribution in the vicinity of cracks in solids
of various configurations and under various load conditions increases with the exten-
sion in the field of practical uses of fracture criteria. At present the stress distribution
in the vicinity of through cracks in homogeneous shell structures is adequately studied
(Panasyuk et al., 1976; Osadchuk, 1985). There are considerably fewer investigations
devoted to anisotropic and nonhomogeneous shells with through cracks (Nykolyshyn,
1993a; Kushnir and Olijnyk, 1993). In the case of non-through crack the problem be-
comes three-dimensional and, if the development of plastic strains is taken into account,
difficult to solve. Therefore, simplified models which are consistent with experimental
data, deserve attention. For instance, the é.-model of Leonov-Panasyuk (1959) and the
model of Dugdale (1960) work well for plane thin-walled structural elements, where frac-
ture is preceded by the development of large zones of plastic strains. This was shown by
Trufyakov et al. (1975) in experiments on model specimens of welded joints of structural
<teel with low and medium strength. It should be noted that a satisfactory agreement of
theoretical and experimental results was also observed in the case, when the configuration
of plastic zones in the test specimens differed from that assumed in the é.-model. An
analogue of this model was used for investigation of stressed state and limit equilibrium
of shell structures, in which the membrane stresses far exceed the bending ones. Shallow
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(Erdogan and Ratwani, 1972), non-shallow isotropic (Osadchuk et al. 1984) and transver-
sly isotropic shells (Nykolyshyn, 1993a) weakened by through and non-through cracks
have been studied.

However, a major part of real elasto-plastic shell structures is nonhomogeneous. Investi-
gations of stressed state and limit equilibrium of such shells are unknown to the authors.
Therefore, an analogue of the §.-model is proposed below for the study of the opening of
non-through cracks in a piecewise-homogeneous cylindrical shell.

GOVERNING RELATIONS AND EQUATIONS

Consider a piecewise-homogeneous closed cylindrical shell built up from two dissimilar
semi-infinite shells. One of its parts is weakened by a longitudinal inner crack with a length
2lo. The shell is referred to the three orthogonal coordinates (e, 3,7) being the principal
curvature lines of the median surface and the outer unit normal to it, respectively. The
origin is placed in the middle of the crack. The known conditions of ideal mechanical
contact are satisfied at the interface o = a* («* = I*/R, R is the radius of the median
surface). The crack is located in the section 8 = 0 and is bounded by lines parallel to
the coordinate ones. 2d; and 2d, are the distances between the crack and the inner and
outer surfaces of the shell, respectively (see Fig. 1). It is assumed that the shell is under
external loading and the faces of crack may be subjected to self-equilibrated forces and
moments. The study is restricted to the case of external loading symmetric about the
crack, as well as to symmetric forces and moments acting on the crack faces. During the
deformation process the faces of crack do not come into contact. Deep cracks only are
considered (d3 = di +d2 < 0.6h, where 2h is the shell thickness). The size of the crack,
the level of external load and the properties of material are assumed to be such that
plastic strain develops through the whole shell thickness in a narrow strip in the vicinity
of the crack.
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Fig. 1. Schematic illustration of a model.

According to the é.-model, the zones of plastic strains are substituted by surfaces of
discontinuity of elastic displacements and rotation angles, while the action of material in
the plastic zone on the material in the elastic one is replaced by appropriate forces and
moments. It is assumed that the prolongation of the crack to the inner and outer shell
surfaces. i.e. the region 8 = 0, a €]—ao; aol, v € [-h —h+2d,]U[h—2ds; h] is subjected
to constant stresses o° = (op + op)/2. Here ap = lo/R, 0B and ¢ are the strength and
yield limits of the material of shell containing the crack. [, is the length of the plastic
zone on the crack line extension at the crack tip located nearer to the interface, N and
M) are the normal force and bending moment describing the action of the plastic zone;
1P, N©?) and M) are the corresponding quantities for the plastic zone at the crack tip
located farther irom the interface. It should be noted that appropriate plastic conditions
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for thin shells must be satisfied by every pair of unknown forces and moments N D
and NG M®.

'hus, in the frame-work of the accepted model the three-dimensional elasto-plastic prob—
lem for a non-through crack of length 2lo is replaced by the two—dlmensmn_al. elastic
problem for a shell with a through crack of length 214 under the following conditions

Néz) — N,?, —(ag+a?f)<a < —ao
Na(a) = N' = N2+ N®, lal < ao
lNél)—Né" ap < a<ao+ap
(€Y)]
MP - M, —(ag+a”) S a< —ao
My(a) = M'— M2+ MP), la| < ao
l ]\f,gl) — A\/[._(,)., apg < a<agt+ap

of = I"/R, a,=1,/R. 2y = 2o + 1, + 17, a'(,+a;,<a‘A

Here N* and M" are the normal force and the bending moment being the reaction of the
1 3 - -1 1
material on the break of internal bonds above and below the crack. According to the
adopted assumptions on stresses in these zones they are determined by

N = 2dy0°, M' =20°(h — d3)(d2 — di)- (2)
N M) are the forces and moments applied to the crack faces, NO, M3 are the forces

and moments acting on the crack line in a shell without a crack. The plasticity condition
for N0, M) (i=1,2) is chosen as the Tresca yield condition for a surface layer

N /(2hap) + 3|MO |/ (2R%07) = 1 (3)
or the condition of a plastic hinge
{N“’/@hw)}' + MDY/ (hPor) = 1. )

For solving the above problem a correlation is established between the considered shell
with the crack and the intact shell with sources of internal stresses of unknown density
located on the crack line. The density of sources is chosen such that the stressed-strained
states of the shell with the crack and the model shell are identical. Using the key sys-
tem of differential equations in displacements for homogeneous shells with cracks (Os-
adchuk, 1985) and the conditions of ideal mechanical contact and extending all desired
quantities and mechanical characteristics on the whole region occupied by the piece\\:ise-
homogeneous shell considered, a key system of partly degenerated differential equations
with step-function type coefficients (Kushnir et al., 1991)

Lyt + Lizv + Lisw = g;(a. B, €xp, ki) + g, (a.B) i=1.3, k=12 (5)

is obtained. Here L;; (i,j = 1.3) are the differential operators no higher than fourth
order with discontinuous coefficients; g:(a, B, KY,) are functions obtained by extension
on the whole region and further action of differential operators no higher than second
order on the strain components €}, and fc(i,,; g:-l(a,,d) are the functions allowing for the
conditions of ideal mechanical contact on the interface a = a* and involving coefficients
of the delta-function type and its derivatives;
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kY = kY =0, K3g = R™! {[02(0)]6(ﬂ) + R [w(a)] aa—ﬁd(ﬁ)} R
& =, =0, €y = R [v()]6(B), Ya:—(a+ af) < a < ag + ap; (6)

» ow
&, =rY =0, Va:a < —(ag+a)Ua a0t ap 6:(a) = R™? _.__1,>;

§(B) is the Dirac function; square brackeis indicate a jump of the quantity in the brackets.

THE PROCEDURE FOR OBTAINING SINGULAR INTEGRAL EQUATIONS

The solution of the system of differential equations (5) is constructed using the Green
tensor matrix ||G’!(«, 8, &, ¢)|l, whose components are determined as particular solutions
of the following system of equations

3
S LG (0, B,6,9) = Fubla — O)8(B =), (1.0 =T.3). ™
j=1

Here L = ||L;j|| is a matrix of operators of the system (5), &; is the Kronecker symbol.

Representing the function §(8 — ¢) and the solution of the system (5) as trigonometric
series, we obtain a system of ordinary differential equations with piecewise-constant co-
efficients for determining the unknown coefficients, i.e. functions of coordinate a . Its
solution is constructed using a method of finding the fundamental system of solutions
(Kushnir, 1980). Now using the 2n-periodical Green tensor, it is possible to write the
integral representation of displacements as

uilenB) = //{ZG"Ka—f,ﬁ—@)g,-(c,@A dédp, i=1.3 (8)
)

p L=t

where u; = u, up = v, uz = w, gi(& )= g;-(f.a,o) +g;'(£,p), D is the whole region of the
median surface of the shell.

Using representations (8) and the corresponding formulae, the forces and moments may
be found at any point of the shell. Satisfying now the boundary conditions (1) on the
crack faces and the force conditions of ideal mechanical contact on the interface gives a
system of six singular integral equations in the derivatives of the generalized displacement
jumps across the crack faces and the jumps of displacement derivatives across the interface

/ {‘I'Q(E)Ix’.l(&a) + W;(f)A’ia(g,a)] dé¢
2o
+/ S W, (8)Ki(6. ) d8 = 2m(Eih) T fila), i=1.3
= (9)

(WO K(8.6) + Wy (O Kis(B, )} de

—ay

27{8

+/ S W, (6)F(6.5)d6 = SisAr. =538

o =5

Elasto-Plastic Piecewise-Homogeneous Cylindrical Shells 1987

where
ay =ag+aP, a; =ag+ay,

W1(6) = )], Us(€) = —R[6:(6)], ws(m:[é‘%u(a,m]

=a

5 9 ?
Ve(B) = [b;v(a,ﬁ)] . U (B) = [aaazw(a.ﬂ)]
63
‘I’a(ﬁ)=/[—aagw(ﬂ',ﬁ)] ds,

a1 =1, a3 =as =c(1—v?), a3 =@ +wa)/(1+ 1),
ags = 2[E2/(1+12) — B /(1 + )] /(1 = 1) = B = 1) (B2 — E1) /(1 = v3),
age = age = aj = agg =0, af; =a3; =0, (i = 5,8),
agy = 2¢} [E2/(1 +v2) — Ex /(1 + )],
ajs = {2 [E2(2 - 12)/(1 = 13) = Ea(2 = 1) /(1 =) /(1 = 1)
2@ =) (B2 = ) /(1= ) = Ea(2 = 10)/(1 = )} /(1 = v},

1
agr = §[E1/(1_V1)_ Ey/(1 — o)),

G =hBRY1-1}), =1 =), f2=Na(a), f3 = Ma(a),

1 —
Kij (£, @) = jaijcth (6 a) + K6 —a)+ K[j(6.0), (1,5 =1,3)

Kij(8,a) = K¥(0,0) + K[j(8,a), (i=1,3. j=58),

Kij(B,6) = K(5(8.6) + K[;(8,6), (=58, j=13).

s L, 6-p 05
K;(8,8) = 3% ctg (—9——) + K70(6,8) (i,5 =5.8).

. s -0 - ~0s . .
I'he regular parts of ker nels.I\‘.j, K ,.‘J., Ix'-j" are continuous for the whole set of real values

f»f arguments and are not presented here in view of their cumbersome form; A, is an
integration constant.

The solutions of the system of singular integral equations must satisfy the conditions

ag 2n

/ U, (§)d¢ =0 (m=1,3), /\Ils(ﬁ) d8 =0 (10)

—ay 0

ensuring the continuity of displacements and rotation angles at the crack tip and, besides,
the 27-periodicity of the function Wg(6).
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The integration limits (the plastic zone lengths [, and (7 ) in the system of integral
equations (9) are unknown. Furthermore, four unknown forces and moments N, MWD
(i=1,2) are contained in the functions i(a), f3 (). Hence, these equations must be solved
in conjunction with additional conditions. The plasticity condition (3) or (4) is chosen
for both values of i and the finiteness of forces and moments in the vicinity of the crack
is enforced, i.e. the stress intensity factors at both crack tips must be equal to zero:

Ki =0, Kj=0, (i=12). (11)

Thus, the complete system of equations is obtained for solving the problem at hand. But
the right-hand sides of the first and second equations, i.e. the functions fi(a), f2(a)
are discontinuous. Numerical experiments have shown that direct methods of solving
such systems lead to a considerable error near the point of discontinuity. Therefore, the
solution of the system of integral equations (9) is constructed as

V() = hi(a) + @rla), k=1,3 (12)

where hi(a) are solutions of the canonical singular integral equations with the discontin-
uous right-hand sides

/ —Zi—(j—){d{ = file), k=1,3, —a; S a<as. (13)

The solution of these equations is found using the inversion formulae for integrals of the
Cauchy type. Inserting the transform (12) into system (9) we obtain a system of singular
integral equations in @ (a) similar to (9), but with the continuous right-hand sides con-
taining integrals of the products hi(a) K ik(€. Q) (i,k=1,3) and unknown quantities N,
N@ M) M) Hence, ®,(a) is represented as

dp(a) = ®(a) + Z (N“’@L(o) + M‘”@fz(o)) k=12 (14)

i=1

and every ®}'(a), (m = 0,4) is found using the mechanical guadrature method which
allows us to reduce the calculation of every function oM (a) to the solution of a system
of linear algebraic equations.

NUMERICAL SOLUTION ALGORITHM

The following algorithm is used for the construction of numerical solution of the problem.
The initial values of parameteres a; and a» are first chosen (in particular, the solution
of the corresponding problem for homogeneous shell (Nykolyshyn, 1993b) may be taken
as an optimal choice). Then the right-hand sides of the system of integral equations for
determining ®x(«) are found and the solution of corresponding system of linear algebraic
equations is constructed. The forces N and moments MY (i = 1,2) are obtained next,
and the plasticity condition (3) or (4) is verified at both zones of plastic strains. If the
plasticity condition in both zones is satisfied with a given error, the problem is solved;
otherwise [, (and analogously [7) wre changed. Integrating the solutions of system of
integral equations (9) and inserting them into the following expression

Alay) = [v(a)] +~ [62(a)] (15)

gives the relation for determining the opening of the crack faces. According to the &é.-
model, the fracture of the shell is assumed to begin when the maximum opening of the
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crack reaches the critical value &, i.e. after changing A(a,v) by éc the expression (15)
becomes the criterion for establishing the relation between the applied load, the crack
size, and the physical and geometrical parameters of the shell under the conditions of
limit equilibrium state.

The numerical analysis is carried out for the piecewise-homogeneous shell made from
aluminium (E; = 0.65 x 10! Pa, v, = 0.3, 0® = op = 1.1 x 10® Pa) and epoxy resin
(F, = 2.6 x 10° Pa, v, = 0.35, o® = o = 4.3 x 10° Pa) with a surface crack. The shell
is subject to internal pressure. The basic stressed state of such a shell was investigated
by Kushnir et al. (1995). The calculations were performed using the following values
of parameters: h/R = 0.01; lo/h = 5; d/h = 0.6 (here 2d is the crack depth). The
maximum opening of the crack is reached at a point & = 0, vy =h-— 2d. Figure 2
represents the dependence of the maximum opening on the distance between the crack
centre and the interface (A* = A/Ao, Do is the opening of the crack in the homogeneous
shell, n = (2lo + ¥ + 1,)/(2a* R)). The curves 1 and 2 correspond to the crack located in
aluminium and in epoxy resin, respectively. From Fig. 2 we notice, that the presence of
similar cracks in different materials of the shell has different influence on its strength.
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Fig. 2. The behaviour of maximum opening vs. the distance between the crack centre
and the interface.

The calculations were also done for other values of parameters. The analysis of these
results shows, that the maximum opening of the crack is reached at the crack tip on
the shell surface v = h or at a = 0, 7 = h — 2d. In the first case (v = h) the crack
will propagate along the shell, in the second case (v = h — 2d) the non-through crack
propagates along the depth and may become a through one. If the opening of the through
crack is less than the critical one, the fracture process stops, otherwise the through crack
propagates along the shell.
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