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PR

ABSTRACT

In the field of non linear fracture mechanics a lot of work has been achieved for structures
submitted to mechanical loadings. But for thermal loadings, and particularly for thermal
shocks, only few contributions are available. We propose, here, to present the main results of
a complete set of finite element computations, conducted by CEA, EDF and FRAMATOME,
on cracked cylinders submitted to combined mechanical and thermal loads. The interaction
between these two types of loads is analysed in the cases of austenitic and ferritic structures.

Moreover, these results are compared to the predictions obtained by simplified engineering
methods (R6 procedure and two French approaches). Their domain of validity is also
discussed.
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INTRODUCTION

Nuclear pressure vessels or pipings can be submitted in their life to severe mechanical and
thermal loadings. In this type of structure we need engineering methods easy to apply but as
accurate as possible to assess the flaws. In this paper we study the basic problem of a cylinder
with an inner circumferential surface crack under combined pressure, tension and thermal
pradient in the thickness. The scope here is to improve simplified rules in non-linear fracture
mechanics through the understanding of the behaviour of these cylinders. After the
presentation of the non-linear computational program and the simplified methods tested, we
discuss the results and give some recommandations on their application.
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VALIDATION PROGRAM

A set of configurations representative of the nuclear industry components have been achieved
and constitute the reference data base to assess the simplified rules. The basic model is an
axisymmetrically cracked cylinder (fig. 1) submitted, separately or simultaneously, to
pressure : Gpj, tension: G, and thermal grdient in the thickness : AT.

The non-dimensional parameters are presented in table 1. Since the effect of pressure is
studied, the load combination factors are given in table 2.
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Two types of material have be taken into account : ferritic and austenitic steel, which tensile
stress-strain curves are presented in fig. 2. The particularity of the first one is to present a
pronounced flat plateau at the yield point.

More than thirty two-dimensional elastic-plastic (small transformations assumption)

configurations have been computed with essentially two finite element codes :
CASTEM 2000 for C.E.A. and ASTER for EDF.

The fracture parameter J integral is obtained using G-6 method [6].[4] validated only under
the Deformation Plasticity Theory assumgptions [8]. We consider that this is nearly true in our
cases since J is constantly increasing.

As we deal with a thermal loading, the validation of this numerical (G-8) method takes into
account the additionnal area integral inside the contour : (8 is a virtual displacement field)

G=[(-w dive +o(Vu.V6))dQ - j(g—‘;(w.e))dg

This is true even for the thermo-elastoplastic finite element results discussed in the application
part below.
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JNTPLIFIED METHODS

\echanical Loading

\Il the following methods to estimate J-integral (JRe. JA16. JEDF ) are based, for the
inechanical part, on the plastic correction of the K| factor using the reference stress technique
.. established by Ainsworth in R6 procedure [1]. This reference stress (Oref) is deduced from
ihe limit analysis of the structure containing the defect and is given as a function of the
membrane and bending elastic stresses in the flawed structure. The general scheme can be
smmerized under plane strain assumption by :
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where: K, the stress intensity factor may be obtained by finite elements or influence
function method,

Oy is the engineering yield strength
GOref is the reference stress in the cracked section

€ref is the reference strain corresponding to the Gref on the uniaxial tensile stress
strain curve of the material.

| he reference stress is deduced from one of the three following equivalent stress models :
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| m and 62, are respectively axial and circumferential membrane stresses

Gy, X0y, +0,, X0y

—O'S(G]m X Gy +0,, Xcm)

<11 and Gy} are respectively axial and circumferential bending stresses deduced from the
~iress distribution in the thickness of the component.

Uhis last formula has been used for the reference stress, in the following applications, to take
into account of circumferential membrane and bending stresses.
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Combined Mechanical and Thermal Loading

In case of combined loading , we need firstof all a classification in primary (P) and secondary
(Q) stresses (for instance, thermal stresses are considered secondary) on which depends the
value of the reference load . We need alsc a way to take into account the influence of both
types of stresses. On this last point the three methods differ.

R6 procedure
For R6 procedure, K parameter is modified by a p factor which depends on L; parameter and
on the proportion of secondary and primary stresses (fig. 3)[10] :

e =

A6 procedure

The J 16 method introduced in the document A16 [7] proposes to take into account the
difference between the nominal stresses far from the cracked section (signo) and in the
ligament (sigdef). The J¢ value is corrected by 2 factors : k] A6 related to signo(P+Q)eq and
signo(P)eq (fig. 4); k2A16 depending on sigdef(P+Q)eq and sigdef(P)eq (fig. 5).
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Moreover, when we have secondary stresses: Gnor #signo(P)eq and Neuber extrapolation
Oref # sigdef (P)eq -
EDF procedure

As far as primary stresses are concerned, JEDF, method involved in the French RSE-M [2] is
the same as R6 one. For the thermal stresses Jeth is multiplied by the (k¢)? factor fitted on the
results of an important set of finite element computations [3] covering the domain :
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This last formula depends on the material : for austenitic steel under linear temperature
gradient B = 0.32. For ferritic steel we have p = 0.44.

Finally, mechanical and thermal terms arecombined as follow :
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2
J{:’le(lﬂ ’
o = [‘{K—rz +ky Jeh ]

These three procedures have been tested and compared to the finite element results.

APPLICATIONS AND COMPARISON OF THE DIFFERENT APPROACHES

Since it is impossible to give all the computational results, we have selected for the
comparisons two geometries and two different materials defined as follow :

austenitic steel : Ryp=300mm; Rp/t=5; at=1/4; E=176 500 MPa;
oy =133 MPa;v=03;a=177.100°C1 ;=186 W(m.°Cy!
ferritic steel : Ry =400mm; Ry/t=10; a/t=1/4; E=191 837 MPa;

oy =188 MPa;v=03; 0= 12.9.10-6 °C-1 ; A = 45.8 W(m.°C)-1

Pure thermal loading :

The gradient in the thickness, AT, is applied progressively from 0 to 180°C. The finite
clement results (fig. 6) show the elastic Je and elastic-plastic J solution in terms of J-integral.
When the yield stress is exceeded the plastic solution becomes lower than the elastic Je. This
is due to the relaxation of the thermal stresses since the strain is imposed. The comparison
with the simplified methods is given in fig. 7. JEpDF curve is the closest from elastic-plastic
solution. J A 1 method gives results reasonably conservative.

Pressure and tension :

As far as pure mechanical loading is concerned we have chosen to present here the case :
ogg = 0.8xoy (internal pressure op; = 23.8 MPa) and 655 = Oy

Plasticity effects becomes rapidly (677>0.7x0y) very strong (J/J¢=10). When we look at the
simplified methods results we conclude that no method predicts the right value (fig. 8). This is
true particularly when the part of the pressure becomes non-negligible in the mechanical
loading. That means that another stress parameter is required to complete the reference stress
definition to include the effect of pressure on the limit load [S]. Here we must not neglect the
circumferential bending stresses in the thickness of a thick tube.

Combined mechanical and thermal loading :

When the last mechanical loading is combined with the first thermal one, the Je remains lower
than J because the influence of the mechanical load is stronger; but the ratio J/Je decreases
below the value of 2. This is reproduced quite accurately by the Jp 16 and JEDF methods (fig.
9) if we start from the good mechanical estimation. R6 results are not shown here because
they are too conservative(Jre/J =4).
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To complete this set of results we give he comparison of the results of the different methods
for a ferritic steel. The same combined loading as above has been applied to a cracked
cylinder (Rpy/t = 10).

When the yield point is reached the plasticity correction climbs up very rapidly so that
estimated J becomes higher than J-int:gral at the end of the application of the mechanical
loading (fig. 10). JEDF curve on fig 11 diverges from the finite element curve at high
thermal loading level because the key curve used to represent the ferritic behaviour does not
match well the stress-strain curve at high stress level.

This divergence (fig.9 and 11) can also be due to the interaction between mechanical and
thermal stresses opening the crack.

CONCLUSION

When simplified methods, like Ré6/rev.3/option 2, are applied on cylinders submitted to
combined mechanical loading, it is inportant to take into account in the reference stress
expression, not only the opening stresses but also hoop stresses for high load level.

For ferritic steels,that exhibit a yield plateau, the approach must be improved particularly in
the vicinity of the yield point, to represent the progressive plastification of the ligament.

Ré6/rev.3/option 2 is too conservative it the case of thermal loading combined with a primary
one. The two other methods (JA 16 and JEDF) takes better into account the secondary stress
relaxation while remaining conservative.

The computational program will be completed by thermal shocks , 3D computations of semi-
elliptical flaws under bending and thermal stresses, and on other cracked structures submitted
to primary and secondary loads. The improved simplified methods will also be applied and
assessed for these more realistic configirations.
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Fig. 2 : Stress-strain curves for austenitic and
ferritic steels
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Fig. 6 : Finite Element results for J and Je
under thermal loading

% Jp (KJ.m-2) _S22/Sy=0,
l St/Sy=0
25
20 | = JEF.
P -
15 1 —— sat6 — s
10 {—{—— JEDF A —~a
5
1 [Eap1/201-nu)sy|
0
o 05 1 15 2 25 3

Fig. 7 : Simplified method results forJ
under thermal loading
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Fig. 8 : Simplified method results for J under
mechanical loading
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Fig. 9 : Simplified method results for J under
combined loading
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Fig. 10 :Simplified method results for J under
mechanical loading on ferritic steel
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Fig. 11 : Simplified method results for J under
combined loading on ferritic steel
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