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ABSTRACT

The holonomic (single-step) analysis of quasibrittle fracture processes is formulated as a
nonlinear complementarity problem under the assumptions of proportional loads, small
displacements, and a fairly general cohesive crack model which exhibits a nonlinear softening
behaviour. These nonlinear softening constitutive laws are expressed in a complementarity
format, a feature of which is the orthogonality of two sign-constrained vectors. The underlying
features of a recent numerical algorithm with the potential of capturing all possible solutions
for any given load level is presented. A well-known example, the three-point bending test, is
used to illustrate numerical application of the method, its potentialities and limitations.
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INTRODUCTION

The problem considered herein concerns the numerical simulation of quasibrittle fracture
processes in concrete-like structures subjected to proportionally applied quasistatic loads, using
the well-known and established cohesive crack model popularized primarily by Barenblatt
(1962), Dugdale (1960) and Hillerborg et al. (1976). In addition to the usual assumptions of
small displacements and linear elasticity outside the cohesive-softening crack, we adopt a
holonomy hypothesis for an a priori known crack itinerary. A holonomic constitutive law (in
the spirit of the deformation theory of plasticity) implies essentially nonlinear elasticity and
hence reversibility. Such an assumption may not be correct in view of unloading, but can still
provide a simple means of capturing essential features of the structural behaviour.

2183


User
Rettangolo


2184 Tin-Loi and Ferris

The main thrust of the work described in this paper is to propose a mathematical programming
method capable of capturing multiplicity of solutions, or showing that none exists, due to such
critical phenomena as bifurcation and loss of overall stability, in a single-step nonevolutive
analysis. At variance with previous work in this direction (Bolzon et al., 1995, 1996) which
uses piecewise linear softening laws, we consider nonlinear softening.

The organization of this paper is as follows. In the next section, we briefly formulate the space-
discretized problem as a nonlinear complementarity problem (NCP), the key feature of which is
the orthogonality of two sign-constrained vectors. This formulation is of course only possible if
the nonlinear softening models are amenable to a complementarity format, which we present
for a fairly general and typical softening holonomic constitutive law. The space-discretization
is carried out within a conventional direct collocation boundary element framework, and hence
is not elaborated upon. We then describe in some detail a recently developed nonlinear
complementarity algorithm which has the potential of efficiently capturing multiplicity of
solutions, albeit at present via an ad hoc search scheme. Finally, application of this algorithm is
illustrated using a classical example.

PROBLEM FORMULATION

Let € denote the domain occupied by the structure (Fig. 1a) with boundary I" consisting of a
constrained part I', and an unconstrained part I, for which displacements and tractions are
prescribed, respectively. The known crack locus I, of possible displacement discontinuity w
is characterized by a generally nonlirear law (Fig. 1b) relating tractions p across its faces to w.
The particular case shown in Fig. 1b simulates the mode I crack propagation in cementitious
materials and will be assumed, in its holonomic form, throughout this work without undue loss
of generality.

The assumption of linear elasticity in £2 allows us to construct, using the geometric and elastic
properties of the structure, a Green function G(x,8), x,Ee I, (x= field point, & = source

point) which relates tractions p to displacement discontinuities w on I", in the unloaded body.
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Fig. 1. Problem definition: (a) structure, (b) softening law.
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Thus,

p) =] GxEWEAr +p (), xEeT,, (D

where p‘ represents tractions at the interface location, generated by the external actions on the
structure assumed to be purely elastic and homogeneous.

Space-discretization of (1) can be easily and efficiently performed by using a boundary element
approach. In the present work, we used a direct collocation nonsymmetric method (e.g.
Banerjee, 1993) with quadratic elements. After condensation is carried out on a standard
multiregion boundary element model to retain only interface variables, the discrete counterpart
of the integral equation (1) is easily obtainable in the form

p=Zw+p°, 2)

with self-evident meanings for the symbols involved. Clearly, (2) expresses, in an identical
form to Colonnetti's well-known imposed rotations approach for bending, the total tractions at
the nodes as being the sum effects of discontinuities w (through the influence matrix Z which
approximates the kernel G) and of a purely elastic component p°.

To complete the discrete problem formulation, we need to supplement (2) with the holonomic
nonlinear softening constitutive law describing the cohesive crack model. Without loss of
generality, assume that this is as shown in Fig. 1b, where the nonlinear portion can be described
by a single function f{w). An elegant description, based on work by Maier initially in the area of
piecewise linear structural plasticity (e.g. Maier, 1970) and later extended to piecewise linear
cohesive crack models (e.g. Bolzon et al., 1994), is as follows:

¢, =p-f(w)+gA)<0, w20, ow=0, (3a)
@, =-wo+w—A<0, 120, ¢,4=0, (3b)

where g(A) = f(w, +A); note that g(0)= 0 since f(w,)=0. The linear case given by Bolzon
et al. (1994) can be recovered by setting f(w)=p, +hw and g(A)=hA, where h is the

(negative) slope of the softening branch. Note that activation of the softening mode, namely
p=f(w), leads to the condition w<w, (since 1 =0) which is in effect a restriction on the

shape of the softening curve.

On close inspection, it can be seen that these relations describe fully the holonomic behaviour
of a cohesive crack model with interface I, which can be conceived as a union of cracks

(where p=0), process zone or craze (where p#0 and w#0) and undamaged material
(where w =0). A key feature of (3) is complementarity (nonlinear due to nonlinearity of fiw)).

Finally, assume that (3) applies directly to any interface node i so that combination of (2) with
the collected nodal softening constitutive laws leads to an NCP in the standard form

F(z)20, 220, z'F(z)=0. (4a)
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The vectors F and z are defined as follows:

—Zw—p°¢ s
F(z){ Zw—p*+ fw)—g( )} z=m, (@b}

wo—Ww+A A
where (f(w)), = f,(w,), and (g(A)) = g,(A,), for each node i on the interface.

Some remarks are appropriate at this stage.

(a) To date, with some exceptions (e.g. Tin-Loi and Pang, 1993), most complementarity
formulations in structural mechanics are cast as linear complementarity problems (LCP)
characterized by an affine F(z)= Mz +¢q, where both M and g are known.

(b)  Solving NCP (4) is not a trivial task. In fact, as highlighted in Bolzon et al. (1995), even
in the affine case, the resulting LCP involves a nonsymmetric and indefinite matrix M and
hence belongs to the class of probems for which no polynomial time algorithm is known to
exist. This implies that it can take ¢xponential time to determine a solution or the fact that no
solution exists.

(c) Even less is known about the solvability of the NCPs which arise in quasibrittle fracture
nonlinear softening problems.

SOLUTION ALGORITHM

In view of the success we have had (Bolzon et al., 1994, 1995) with the recently developed
NCP solver PATH (Dirkse and Feris, 1995a) in capturing multiple solutions for the LCP case,
we also tried it on the NCP formulation. In the following, we give the basic ideas, first explored
by Ralph (1994), underlying this sdlver; we consider specifically, for the sake of simplicity, the
NCP case only, rather than the more general mixed NCP formulation.

There is a well-established theory for solving nonlinear equations H(x)=0 using Newton's

method in combination with a linesearch damping step (e.g. Ortega and Rheinboldt, 1970) that
increases the domain in which the basic method converges. In order to extend these ideas to
complementarity problems, the NCP is recast as a zero-finding problem for a system of
nonlinear equations. This can be achieved in several ways; the PATH scheme uses the normal
map F, introduced by Robinson (1992). This map is formed by composing the projection map
x, with F in the following manner:

F (x)=F(x,)+(x-x,)=0 )

It is well known that x, can be computed componentwise as x,, = max{x,, 0} and that F, is
a piecewise smooth map; it is not differentiable whenever some x; = 0. It is also clear that if x
solves (5) then z = x, solves (4) ard conversely if z solves (4) then x =z — F(z) solves (5).

For differentiable systems of equations, Newton's method, at iteration k, determines the Newton
point by finding a zero of the first-order (linear) Taylor series expansion:
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H(x*")+VH(x")(x-x*)=0.

Since F, is nonsmooth (but is piecewise smooth), it is approximated by the piecewise linear
normal map A, defined by

A (x)=Mx, +q+x—x,, (6)
where M = VF(x*) and g = F(x})— Mx . The Newton point x4 isazeroof A, .

The path generation component of the scheme involves constructing a path between the current
iterate x* and the Newton point x’ . This piecewise linear path, parametrized by a variable 7, is

constructed by pivotal techniques using an extension of Lemke’s well-known method (e.g.
Cottle et al., 1992). Each portion of the path is identified by a new pivot step in the manner
now described.

If we define z =x,, v=(z—x), and r = F,(x*) then
Ax)=(-Dr )
can be rewritten as the following system:

4
M -1 r)v|=—g+r, 220, v20, z'v=0, 0<r<l (8)
L

Note that z =x*, v =(z—x*),, t =0 satisfies (8). The first equation in (8) is used to relate the
basic (essentially nonzero) variables to the nonbasic (zero) variables as is done in linear
programming. Increasing ¢ from O using a pivot in (8) generates a parametric solution (in 1),
namely (z(¢), v(¢), ). Each ensuing pivot step forces a variable to leave the basis using the usual
ratio test, whereupon an entering variable is chosen in accordance with the complementarity
condition z7v=0. The Newton point is found when t leaves the basis at value 1. The
parametric solution x() to (7) can be recovered using x(t) =z(t)—v(t). Each pivot thus
represents a breakpoint in the piecewise linear path x(1).

The path generation serves not only to find the Newton point, but also provides the necessary
information to damp the method. Damping is the standard technique used to improve the
convergence properties of an algorithm. For example, the linesearch damping step for systems
of equations H(x)=0 takes

x()=x* +1(x) —x")
and chooses a value of ¢ between 0 and 1 to force an appropriate decrease in \H (o) -

Typically, an Armijo backtracking search is performed. That is, the points x(1), x(£), x(H), .-
are tried successively until a desired decrease in |H(x(1))] is achieved.
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In the NCP case, the damping step makes use of the fact that A, decreases linearly in £ on the

path as indicated by (7). The piecewise linear path is traversed backwards, checking at each
breakpoint whether

|F.(x@)|<(1-0 n|F.")), o@D, 9)

This condition will be satisfied for small z due to (7). The constant o is chosen to be close to 0,
so that almost any decrease in |[F, | will be sufficient for acceptance. A standard Armijo search
is carried out on the first segment of the path if necessary.

PATH also employs techniques to relac the acceptance criterion further to improve speed and
robustness. These techniques include sparse updating schemes, nonmonotone stabilization and
a watchdog technique (see Dirkse and Ferris, 1995a for further details). Also, since PATH
starts each pivotal sequence at the current point, it is typically more efficient that Lemke's
scheme, even for LCPs. Other enhancements are described in Dirkse and Ferris (1995b).

ILLUSTRATIVE EXAMPLE

The familiar 3-point bending (3PB) cise is used for illustrative purposes. The softening laws
assumed are not meant to be represeniative of actual experimental data; they merely serve to
illustrate the capability of the solver inhandling such types of constitutive relations.

The PATH solver was designed to cempute a single solution. However, as in Bolzon et al.
(1995), we attempted to capture all selutions by trying different starting vectors z. The crude
scheme adopted to generate these vectors is as follows. The starting vector typically was
divided into 6 subvectors of approximately equal lengths; in the case of an NCP of size 42,
each subvector was thus of length 7xI. All elements of a subvector were assigned a value of
either 0 or z* (say 0.001). This gave rise to an obvious 64 (26) combinations to try for each
problem. The main reasons for such a scheme were that 6 subvectors do not lead to an unduly
large number of trials and it is expected that any cracking would occur in definite patterns with
cither nonzero values occurring in corsecutive or alternate sequences. This scheme managed to
capture all solutions (the numbers of which were known in advance) for all examples ran to
date, with the exception of one examyle that had 11 distinct solutions. Computing times for all
examples (maximum size = 146) were l00 small (a few seconds) to usefully report in detail.

Our data for the 3PB example are: length = 400 mm; height, depth = 100 mm; Young's
modulus E = 14700 MPa; Poisson's ratio v = 0.1; p, = 1.285 MPa. Three cases were analyzed.

Case (i): a nonlinear softening law asymptotic to the w-axis and described by
@=p-p,(1007%°")<0, w20, ow=0,

Case (ii): a single linear softening branch law with the same p, and initial slope as case (i).
Case (iii): a nonlinear law obeying (3} and closely approximating (i) with w, = 0.03 mm and

fw)= po(l=w/wy)’.

Holonomic Analysis of Quasibrittle Fracture 2189

The results for 10 quadratic boundary elements on the interface (21 nodes) are shown in Fig. 2.
Solid lines represent the response for the asymptotic nonlinear case (i) softening law with the
points on the response graph indicating the load levels used; dashed lines represent the linear
case (ii) behaviour; and case (iii) response is shown by the dotted line. No computational
difficulties were experienced, even in the presence of the observed snap-back behaviour.

As is well-known (e.g. Elices and Planas, 1995), the maximum tensile strength and the initial
slope are sufficient to predict maximum load capacity. This is confirmed by the results shown
in Fig. 2 for cases (i) and (ii). Also, as expected, the linear law with a smaller mode I fracture
cnergy (per unit surface) leads to a more severe snap-back behaviour. The similarity of the
responses for cases (i) and (iii) is obviously due to the closeness of the corresponding softening
models.

CONCLUDING REMARKS

Holonomic analyses of quasibrittle fracture based on the cohesive crack model with nonlinear
softening can be elegantly formulated and solved as NCPs. Investigation of a recent Newton-
type algorithm, implemented as the general purpose mixed complementarity code PATH, has
shown that it has the potential of capturing multiplicity of solutions. The fact that nonlinear
Jaws can now be accommodated easily in the analysis obviates the computational burden of
piecewise linearization and also means that other more complex, not easily linearized nonlinear
fracture laws as arise, say, in mixed-mode processes, can be directly adopted. However, further
research still needs to be carried out in improving the efficiency and robustness of the search
procedure for obtaining multiple solutions, or determining that no solution exists.
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Fig. 2. Numerical simulations of 3PB example: — case (i); — — case (ii); - - case (iii).
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