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ABSTRACT

A model of crack growth in elastic material is developed. It is assumed that crack initiation
leads to nucleation of micropores near a crack tip. These micropores are coalesced with
one another and with the crack that results in crack growth. Crack is modelled by strongly
clongated elliptic cavity. It is supposed that opening of new micropore takes place at
the point where a strength criterion exceeds maximum. Analyses are carried out for two-
dimensional case with allowance for finiteness of strains using Signorini’s expansion and
Muskhelishvili’s technique.
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INTRODUCTION

A conventional approach in fracture mechanics is based on consideration of a crack as a
» mathematical cut” or a hole bounded by a contour with singular points. However, in
some recent works devoted to detailed analysis of crack growth mechanism and interaction
between crack and microdamages crack is considered as a hole with a smooth boundary.
Thus, model of crack growth proposed by Bolotin (1993), Bolotin and Lebedev (1996)
is based on the assumption that curvature radius at the crack tip is finite and may be
changed in the process of crack propagation. In this model microdamages are simulated
by by introduction of a special scalar parameter (microdamage measure) into constitutive
equations. A similar approach is proposed by Paas et al. (1993).

In the present work crack is simulated by a narrow slot with non-zero width, assuming
finite curvature of slot contour at the tip. It is supposed, that nucleation of a crack induces
successive opening of micropores coalescing with one another and with the crack that leads
to crack growth. We assume also that opening of the next micropore takes place at a
point where a strength criterion exceeds maximum. Unlike Bolotin (1993) and Paas et
al. (1993), we consider microdamages as a stress concentrators disposed near the crack
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tip and interacting with a crack. It should be noted that interaction between elliptical
holes that are sufficiently differ in size (the smaller hole in this case may be considered
as a micropore) and impact of configurations of these holes on fracturing patterns are
investigated by Tsukrov and Kachanov (1994) within the scope of linear elasticity. In the
present work we take into account of nonlinear effects caused by finiteness of deformations
and nonlinearity of constitutive equations. We consider two-dimensional problems and use
analytical technique for solution, (Muskhelishvili, 1963, and Savin, 1970).

CRACK GROWTH MODEL

In this section we consider meclanism of crack growth in previously loaded body undergoing
finite deformation. This mechanism is founded on the theory of repeatedly superimposed
large deformations developed by Levin and Taras’ev (1980), Levin(1988). Nucleation of
initial crack is not considered in detail. The generalized statement of problem is the
following.

Let the large plane static strains and stresses are brought about by the external forces in
the nonlinear elastic body that was in the initial (unstressed) state . Body passes to the
first intermediate state. Then a closed surface (boundary of a crack) is imagined in a body
and the part of a body bounded by this surface is removed, and the effect of removed part
on the remained one is replaced by the forces distributed over this surface (on the principle
of releasing of braces). It is dear that this transformation doesn’t change the state of
stress and strain in a body. Then these forces passed to the category of the external forces
are reduced to zero quasistatically (for example, isothermally). It raises a large (at the
vicinity of formed surface) strains and stresses that are superimposed on the large initial
strains and stresses already existed in a body. Body passes to the second intermediate
state. Naturally, the shape of arisen boundary surface is changed, and one can prescribe
this surface either in the first intermediate state or in the second intermediate state. In
the second case the shape of nevly formed boundary surface in the first intermediate state
is unknown. An approach to sclution of this kind of problems is proposed by Levin and
Taras’ev (1980) and Levin (1983).

If the strength criterion K is exceeded by loading then the opening of micropore takes
place according with the aforecited scheme (the micropore is considered here as a narrow
slot). Body passes to the third intermediate state. Then the procedure of micropore
opening continues while the strength criterion satisfies in a some part of a body.

To facilitate particular analysis in the work it is considered that all the narrow slots are
elliptical either at instant of their formation or in transition to the state following after the
state of formation. Either gener:lly known strength criteria (see, for example, Cherepanov
(1974)) or combinations of theirs are used in this work to study as the cases when the first
micropore opens at some distance from the narrow slot as the cases when this micropore
opens next to the surface of narrow slot. For the particular analysis the following models
(problems) are used:

1. The first micropore opens at adistance more than b from the surface of narrow slot ( bis
the major axis of ellipse simulatirg micropore shape ). It is considered that the micropores
open sequentially and if the distance between the point where Ks is at a maximum and
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( narrow slot or micropore ) exceeds b/2 then
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BASIC RELATIONS

We use notation presented by Levin and Taras’ev (1980) and Levin (1988).
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The following class of functions is used for solution:
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Note that more particular class of functions
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has been used by Kosmodamianskii and Chernic (1981), Xiwu et al. (1995) to solve plane

problems of elasticity for multiply connected regions.

sing functions in the form of (11), it is necessary to

To implement Schwartz technique u
m) at the contour [§| = 1.

approximate expressions (ém— ¢)* by rational functions of & (I #

For this purpose, Faber expansion is used.
For implementation of computational procedure, outlined above, specialized computer

algebra system have been developed. This system partially makes possible to perform
the following operations on the functions of the form (11): addition, multiplication,
differentiation with respect to z or z, computation of Cauchy-type integrals over boundaries
of holes, complex conjugation, computation of limit when |z| = oo, computation of a value
at a given values of arguments (Levin and Zingerman, 1987).
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NUMERICAL EXAMPLE [8] Levin, V.A. and K. M. Zingerman (1987). A possibility of application of computer
algebra technique to the problems of superimposed finite deformation. In: Mekha-
nika Elastomerov, (I. M. Dunayev, ed.), Vol. 3, pp. 28-35. Krasnodar Polytechnical

For the particular analysis (for the first type of problems, criterion (8)) the following values ! :
: Institute, Krasnodar (in Russian).

of parameters are used.

The shape of narrow slot is prescribed in the second intermediate state and is approximated (9] Murnaghan, F. D. (1951) Finite Deformation of an Elastic Solid Wiley, New York.

by the ellipse with semiaxes bj and a; (my = (b1 — a1) / (b1 + a1) = 0.75). A case of uniaxial - (10] Muskhelishvili, N. I. (1963) Some basic problems of the theory of elasticity. Noordhof,

initial loading is considered: 03 = 093 = 0; o53/p = 0.1 . We consider the case when Groningen.

the major axis of ellipse is parallel to &, axes. For simplicity, we assume that the major

axes of micropores are parallel to the major axis of the main crack. (11] Paas, M. H.J., P.J.G. Schreurs, and W.A.M. Brekelmans (1993). A continuum
approach to brittle and fatigue damage: theory and numerical procedures. Int. J.

For compressible material (5) with material constants A/u = 1.341, Ca/p = —0.272, Solids and Structures, 30, 579-599.

Ca/p = —3.183, Cs/p = —2.715 at « = 0.75, Ks = 0.54 first micropore opens at a
distance of | ~ 0.007b, from the tip of initial slot. In this case, we assume that micropores
are circular with the radius & = 0.002b,. For incompressible material (7) with § =1 at

(12] Savin, G.N. (1970). Stress distribution around holes. NASA Technical Translation
TTF-607, Washington, D.C.

a=0.1, Ks = 0.42 first micropore opens at a distance of | ~ 0.002b, from the tip of initial P [13] Truesdell, C. (1972). A First Course in Rational Continuum Mechanics The Johns
slot. In this case we assume that micropores are circular with the radius b = 0.0005b;. Hopkins University, Baltimore, Maryland.

As for compressible material as for incompressible one opening of the following micropores

leads to the coalescence of micropores with narrow slot. (14] Tsukrov, L. and M. Kachanov (1994). Stress concentrations and microfracturing

. patterns for interacting elliptical holes. Int. J. Fracture, 68, R89-R92.
In the problem of the second type (strength criterion (9)) at the same values of parameters :

slot growth continues after the opening of some micropores. [15] Xiwu, X., S. Liangxin, and F. Xugqi (1995). Stress concentration of finite composite

laminates weakened by multiple elliptical holes. Int. J. Solids and Structures, 32,
3001-3014.

In the problem of the third type two equal narrow slots are formed simultaneously, large
principal axes of ellipses lie on the same line and the distance between their centres is 3bo.
When the criterion (8) is used at a choosen values of parameters the coalescence of these
slots takes place, and the first micropore opens in the middle of line joining the centers of
ellipses.
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